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UQ IS ESSENTIAL TO ALL MODELING EFFORTS

"All models are wrong; the practical
question is how wrong do they have

to be to not be useful" [BD86]

Modeling is essential for
understanding, predicting and
designing complex systems

Poor quality modeling can have
catastrophic consequences

Different models of the same
system can produce vastly
different predictions

Credible modeling requires
assessment of uncertainties

Prediction of ice-sheet velocities
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Regional contributions to sea-level rise

Predictions of sea-level rise from high-profile studies



APPLICATIONS

Tsunami/flood prediction

Aerospace design

Acoustic testing

ti
Material engineering

Groundwater flow

Biology and public health

Predicting burnt area from forest
fires

Learning governing equations from
data



UQ WORKFLOW



CERTIFYING UQ ANALYSES

Define objective

El Define Qol

ET Identify sources of uncertainty

El Parameterize sources of
uncertainty

El Define metrics

13 Condition prior uncertainty on
data (inverse UQ)

Propagate posterior uncertainty
through model to compute
defined metrics (forward UQ)

Validate estimates of uncertainty

El Design, prediction, discovery

El Sea level rise

El Forcing, friction, geometry

13 Probabilistic, interval, fuzzy
arithmetic

VaR, CVaR

I3 Condition initial condition,
friction on surface velocities

Monte Carlo sampling,
Probabilistic arithmetic,
Surrogates

Does uncertainty estimates
"bound" data



DEFINE OBJECTIVE AND QoI

Prediction of sea-level rise

Inform decision making

Low accuracy requirements

Single Qol - sea level rise

Aerospace certification

Certify system as safe

High accuracy requirements

Multiple Qol - Thrust,
structural reliability, ...

Focusing on a handful of well-defined Qol and significantly reduce the
computational cost and data requirements of UQ



IDENTIFYING SOURCES OF UNCERTAINTY

All potential sources of uncertainty
must be documented

Parametric uncertainty
(uncertain conditions)

Forcing, boundary conditions,
rate parameters, etc.

Model for uncertainty (known
unknowns and unknown
unknowns)

impact should be quantified
during validation

Complexity of model should be
continually evaluated. Less complex
models can facilitate more accurate

estimates of uncertainty

Lateral boundary r,
Basal boundary r;

Parametric - initial ice velocities
u, forcing b, geometry H, basal
friction

Model form - Calving process,
horizontal velocities, basal
hydrology, unknown missing
physics



CHARACTERIZATION OF UNCERTAINTY

Model uncertainties must be
parameterized

The parameterization chosen
(lumped, field, etc.) can
significantly effect results

The information provided (PDF,
bounds, etc.) impacts
interpretability of results

Often little thought is given to
this step

Chosen parameterization must be
well justified and/or sensitivity of
Qol uncertainty to the chosen

parameterization must be
investigated

Different parameterizations of Basal friction

Different distributions (Gaussian random fields with
different correlations)



DEFINING MEASURES OF UNCERTAINTY

Measures used to communicate uncertainty must be tailored to
stakeholder needs

Need to determine if stakeholder cares about average performance or
avoiding certain outcomes.
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The choice or measure will impact the most efficient approach for
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We can improve estimates of uncertainty and reduce impact of prior
distributions by conditioning on observational data.
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Probabilistic inference can be used to determine the input uncertainty
that is in some sense consistent with observations. Bayesian inference is

popular but there are a number of alternatives.



OPTIMAL EXPERIMENTAL DESIGN (OED)

Data are not equally informative
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One should acquire data that maximize information gain whilst
minimizing cost of experimentation.

Use measure of change in uncertainty

K L(7riA : 7rX) := 7rt.A.' log (—`.1-)dµA.
A 7rA



Given parameterization of input uncertainty estimate their impact on
output Qol

Variables

inner well shape

Wall thicknesses

Stringer locations

Material properties

inlet conditions

lima transfer coefficient

The appropriate approach depends on chosen uncertainty measures,
accuracy requirements, number of uncertain parameters, "smoothness"

of input-output map



SENSITIVITY ANALYSIS

Sensitivity analysis (SA) is often an important phase of uncertainty
quantification. SA can help

• Identify sources that significantly impact uncertainty in predictions

• Identify sources that are constrained by data

• Be used to guide dimension reduction and reduce the cost of UQ
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- Mass

- Thrust

- Load layer failure

- Thermal layer failure

•

SA is often only applied to model parameters, however it can be
generalized to investigate impact of assumptions, e.g. prior distributions,

and the relative importance of components within a larger system.



Uncertainty estimates must be validated

Interpolation - validate estimates on
independent data set under same
conditions.
Wrong assumptions such as incorrect error
model (likelihood in inference) can lead to
unjustified confidence.

used to calibrate uncertainty

Extrapolation - validate estimates under
different conditions.

Models validated in interpolation regime can
fail miserably under new scenarios

Embedded error models can limit over
confidence and improve extrapolation

10°
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• Data

— Mean prediction

- Posterior unCertaiMy

Gaussian error model
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• Data

— Mean predmnon

model error

- Posterior uncertainty

Embedded error model
[SHN19]
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UQ METHODS TAXONOMY

DECISION MAKING UNDER
UNCERTAINTY

Use estimates of
uncertainty to inform

design and qualification
of engineered systems

using rigorous
connections between

regret and risk

DATA ACQUISITION

INFERENCE

FUNCTION

APPROXIMATION

Uncertainty quantification (UQ) is not a post-processing
step. UQ provides a framework for improving credibility
and requires close collaboration with modelling teams

through the entirety of product development

se simulation/approximatiA
to guide experimental design

Requires repaligmlitikiiii

Fuse data and simulation
to reduce uncertainty

Requires many simulations

Identify and exploit
MULTI-FIDELITY structure in data

MODELLING



ALGORITHMIC CHALLENGES

Cost: High-fidelity simulation is expensive. Must compute statistics
from limited number of samples (simulations).

High-Dimensionality: Computational cost is often amplified as number
of uncertainties increases.

Inference: Prior estimates of uncertainty can be overly conservative.
Need to condition probabilistic estimates on observed data.

Data Acquisition: Determine experiments which are most informative.

Model Form Error: Incorporate model inadequacy into uncertainty
estimates

Variables

inner well shape

Wall thicknesses

Stringer locations

Material properties

Inlet conditions

Heat transfer coefficient



FUNCTION APPROXIMATION



Variables

Inner wall shape

Well thicknesses

Stringer locations

Mate. properties

Inlet conditions

Heat transfer coefficient

FORWARD UNCERTAINTY QUANTIFICATION
FUNCTION APPROXIMATION

BAP
1"11111.,

A =

lEA(A) 1 u It a (A)
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•eit• • .0, • 41b...
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 •

Q(ua(A)) = a(A)

1rD (0a(A))

Must compute statistics from limited number of samples (simulations)
Computational cost is amplified as number of uncertainties increases



MULTIVARIATE POLYNOMIAL INTERPOLATION
TENSOR-PRODUCT INTERPOLATION

Define a set of univariate points
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DELAYING THE CURSE OF DIMENSIONALITY
SPARSE GRID INTERPOLATION
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DENSITY ESTIMATION
SAMPLING ON SPARSE GRIDS

Corollar BJW18c
Error in push-forward using isotropic level-n CC sparse grid satisfies
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WEIGHTED APPROXIMATION
HANDLING DEPENDENT PROBABILITY MEASURES

Sparse grids can be used effectively for
independent random variables

Sparse grids can be improved upon when
using dependent measures

eorem
Let C, := maxzEr 'g̀'(u(Y)), and c := — ftg Mg, then

Mu — < /P

Sample complexity can be reduced by
allocating samples in regions of
high-probability while maintaining stability:

Leja sequences - polynomial approximation
power function sets - radial basis
functions/Gaussian processes

Univariate weighted Leja
sequence

Multivariate weighted Leja
sequence



DELAYING THE CURSE OF DIMENSIONALITY
LOW-RANK TENSOR DECOMPOSITIONS

The canonical tensor decomposition represents a tensor as the sum of
outer product of d vectors
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Number of samples required grows quadratically with rank r and linearly
with dimension d and number of univariate bases p [GJ18]



DELAYING THE CURSE OF DIMENSIONALITY
SPARSE APPROXIMATION

Approximate function with small number of
nonzero terms fA(A) = a,95,(A)

s=#{il jail > 5}

10 -minimization (NP HARD)
minllallo s.t.Ilf — fA112 E
a

11 -minimization (Finds sparse solution under
certain conditions)

minlIalli s. t. Ilf fA I .I2 <— E. 
a

lf a function is sparse the
number of samples required to
compute the coefficients only
grows linearly with dimension

Sampling strategies for weighted probability spaces are needed [JNZ17]



FUNCTION APPROXIMATION
SUMMARY

Build approximations from limited simulation data

Growth of samples required can grow exponentially
with dimension (curse of dimensionality)

1 Ion

— Exploit structure in function

Sample in regions of high-probability whilst

maximizing conditioning

111.44 I LIFI• 11.7. 

• Sparse grids (smoothness) [JR13, NJ14]
- Compressive sensing (sparsity) [JES15, JNZ17]

Low-rank decompositions (separability) [GJ18]

Find most sparse
representation If

1/4
Find low-rank 1

L. representation



MULTI-FIDELITY MODELING



MULTI-FIDELITY MODELING
BALANCING SOURCES OF ERROR

Multi-fidelity modeling leverages simulations of lower-fidelity models of
reduced cost to increase the tractability of sampling/approximating a
high-fidelity model

Q- Oce,/ LP(A) Q - Q«
LP (A) 

+
LP (A),

//

To minimize simulation cost we should balance physical error (I) with
stochastic error (II). I.e. only sample highest fidelity model when stochas-
tic error is smaller than deterministic error [JW15]

If models ensemble forms a hierarchy, i.e.

0« - Q 0 as max a

sparse grids can be naturally extended to
multi-fidelity context
[HANTT16, dBR17, JEGG18]



MULTI-INDEX SPARSE GRIDS

Balance stochastic and interpolation errors
be refining in both spaces

Adaptively refine to minimize error and
cost

4

3

6 2

FT

Despite lack of smoothness guarantees
MISC can reduce cost by orders of

magnitude

Adaptivity can be thought of using SA
to increase efficiency of UQ
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CONTROL VARIATE MONTE CARLO
FUNDAMENTALS

The MC estimate of the mean

= N-1 E 0a(A(2))
n=1

Central Limit Theorem implies error normally distributed with variance
N-11T[Qc ], as N oo.
Leverage correlations of low-fidelity models to reduce variance of
estimator.

Q«v = Qa+'Y (On — itK)

Given r samples of Oa and rk of e2„,, variance in (72,T1 is

V[e] = (1 rn P2)V[Qa1rkra

where correlation between Qa and



CONTROL VARIATE MONTE CARLO
A GENERALIZED FRAMEWORK

For multiple models the CV estim tor is

0,,,cv =0 + — ita) = Q« +73:
«EA

remrgra.-.-.. m 
The Optimal CV weights are

7* = —Cov [31,0] 1 Cov [A, 01

Multi-level MC (MLMC) is a control variate algorithm A. = {0, , L} ,

= (1, • • • ,1)T L
E [OL] = E [Qo] + EE [ge — ge-1]

f=1

"1111.11111111117"1"11111" =IP
Regardless of number of models M, variance of MLMC satisfies

v[cpuvic] < (1 pmaxyv[0]

Pmax is max correlation of QL with 1!)2, i = 0, , L —



Variance reduction for fixed high-fidelity samples of Q as a function of
numbers of samples per level ri(x) = 2i±x for 4 low-fidelity models
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MULTIFIDELITY MODELING
EXPLOITING DIFFERENT MODEL RELATIONSHIPS

Use Bayesian networks to efficiently compute Bayesian regression basis
coefficients. Bayesian generalization of MLMV and CVMC

Represent each model with polynomial basis with coefficients (92.
Estimate high-fidelity B using graph covariance on all models O.

0 0 0

4

2

2
4

2

4
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MULTIFIDELITY MODELING
SUMMARY

Goal
Use ensemble of models to reduce errors in statistics

Challenge A
Relationship between models may not be known

Solution
• Learn and exploit relationship between models
• Allocate samples between models to balance

deterministic and stochastic errors

Methods
• Variance reduction methods (MLMC, CVMC)

[GEGJ18, GGEJ18]
• Multi-index approximation [JEGG18]
• Bayesian network learning [GJGE18]

N.1



INVERSE UNCERTAINTY QUANTIFICATION



PARAMETER INFERENCE

Deterministic Inversion

Q

Find parameter values that
produce data. III posed must
impose regularization.

Stochastic Inversion

7ry)bs H

Find probability of parameters
producing data. Prior distribution
is a form of regularization [Stull)].



REDUCING UNCERTAINTY USING DATA

We can reduce estimates of uncertainty and improve the performance
of design whilst still satisfying constraints.
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Can we determine the probability density that when push forward through
a model reproduces a given density on the observations?



A NEW APPROACH FOR INVERSION
PUSH-FORWARD BASED INFERENCE

Theorem BJW18b

The consistent updated density is

7rX(A) = 7rA (A) 7r ips(Q
(A)) 

7FC, (Q(A)) •

Algorithm: Approximating the Push-forward of the Prior

Ei Given a set of samples from the prior density: {Ael.

El Evaluate the model and compute the Qols: qz = Q(Ai).

la Use the set of Qols and use a standard technique, such as a kernel
density method, to estimate 7?)(q).
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EXAMPLE
A SIMPLE NON-LINEAR SYSTEM
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Initial
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EXAMPLE
A SIMPLE NON-LINEAR SYSTEM

08 005

Initial

24

P.snm of p,0,1

'0 01 02 03 04 05 06 07

Push-forward of Initial
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EXAMPLE

2 6
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A SIMPLE NON-LINEAR SYSTEM
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UTILIZING SURROGATE MODELS

What happens when we use a surrogate model to compute the
push-forward

Bad Surrogate

Theorem BJW18c

The error in the updated density using an isotropic leyel-n CC sparse
grid satisfies

117TV irA) — Au'n(A)11
Li (A) — 

< 
C
((logiuM) 2s-Fm

I 1 +Ck,rNW:(log N
)(r+2)(k-1)+1 .



EXAMPLE
GAUSSIAN PEAKS

Gaussian peaks function Density on observations Contours in A

We let A = [0,1]2 and consider a sum of Gaussian peaks.

The initial density is uniform over A.

The goal is to investigate how the accuracy of the surrogate model
afFects the updated density.



Q.90)

7r.w.t(A)

Samples
from
posterior

ry,bs(q) and
71.Q.(post)

JA -5,•..t(A) dizA

EXAMPLE
GAUSSIAN PEAKS

Level 2 (17 pts) Level 3 (49 pts) Level 4 (97 pts) Level 5 (161 pts)

•

C>-

873 4653 5733

o

7032

0.4789 0.8704 0.9787 0.9825



RESISTIVE MHD PROBLEM

VMS stabilized finite element
approximation

Qol is the average induced magnetic
energy.

1
Q = f B y2) d52

2µ0

Treat 4 input parameters as uncertain
with uniform prior

Parameter Min. Max.

Viscosity 1.0E-3 1.0E-2

Use LHS study with 100 samples Vol. source 1.0E-1 5.0E-1

Build Gaussian process regression model Resistivity 1.0E-1 1.0E1

as surrogate
Density 1.0E-1 1.0E1

Use 50,000 samples of surrogate to
compute push-forward of prior



RESISTIVE MHD PROBLEM

We assume a Gaussian density for the Qol with mean 1.55E-3 and 10%
standard deviation.

3,irj0

2500-

2000-

1500-

1000-

500-

— Push—forward Prior
— Push—forward Post (normal)
—Observed

6 B 10 12 14

x10-9



INVERSE UNCERTAINTY QUANTIFICATION
SUMMARY

Condition estimates of uncertainty on experimental
data

Challenge •
Develop new formulations and reduce sample
complexity

Find input measure whose push-forward matches
observed density

• Reduce inverse problem to one forward solve

Bayesian inference

Push-forward based inference [BJW18a, BJW18c]
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DATA ACQUISITION



OPTIMAL EXPERIMENTAL DESIGN (OED)

Data are not equally informative
x10-'6

71,

7.X (2,2)

M.II ,Ot (3,2)
4 (2,3) (((232,: 322)))
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3
h(R,E,X

How does one select the maximize information gain whilst minimizing
cost of experimentation.

Use measure of change in uncertainty

K L(7riA : 7X') := f tA(' log 1('77 dit A .
A A



INFORMATION THEORETIC DESIGN

OED must select a design before experimental data become available.

In the absence of data, we use the simulation model to quantify the
information gain of a given experimental design for all possible
realizations of data for that design.

Let O denote the space of densities that may be observed in reality

0 = {/CT(E[7',A TV[7cA112, a2) : T E {-1, 0, 1}} ,
<2(, 7
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Expected Information Gain

E (Q) := J K L(d) (d)dp,T).

Given samples from push-forward:
q(i) = Q(A(3))compute

(1 N 71s(Q(A(0)) 7robs(Q(A(0))
ker) ,---:-J 7 Ei_1 Q log DQ

— 7 D(Q (A(') )) 71, (C 0(') ))

OE

Let Qz E Q be a specific design in space of all
possible designs, then OED solves

(01 t := arg max E(k.).Qz cQ

We would choose (2,2)
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DATA ACQUISITION
SUMMARY

I

Determine data that maximizes reduction in
uncertainty whilst minimizing cost

Challenge
J

Requires solving many inverse problems

Solution 1
Use push-forward based inference - only one
forward problem required

Use gradient based optimization

Methods
• OED using SVD of Jacobians [BJP+18]

OED using Push-forward based inference [WWJ17]



DESIGN AND DECISION MAKING UNDER
UNCERTAINTY



A SIMPLE MOTIVATING EXAMPLE
CANTILEVER BEAM

L

1-10.

W

  (3  ,c2 y2

.f1(A) = 1 
6L X 

+
Y 
) > 0 f2(A) = 1 

4L 
+ — > 0

Rwt w t — 2.2535Ewt '\/ w4 t4

Uncertainty Symbol Prior
Yield stress R N(40000, 2000)

Young's modulus E N(2.9e7, 1.45e6)
Horizontal load X N(500,100)
Vertical Load Y N(1000,100)



DESIGN UNDER UNCERTAINTY

Deterministic Design •
argmin wt

w,t

fi(A) 0

f2(A) 0

1 < w < 4 1 < t < 4

1.0

0.8

LL 0.6

0.4

0.2

0.0

— prior

— deterministic

-0.02 0.00 0.02 0.04 0.06
fi(R, E, X ,Y)

Design under uncertainty

argmin wt
w,t

P(A(A) < 0)

P(f2(A) < 0) < 62
1 < w < 4 1 < t < 4

1.0

0.8

LL 0.6
a
t_J

0.4

0.2

0 0
-0 2 -0.1 0.0

MR, E, X,Y)
0.1



2

PUTTING IT ALL TOGETHER
CANTILEVER BEAM

Design under uncertainty

argmin wt
w,t

P(f1(A) < 0) < 61

P(f2(A) < 0) < 62
1 < w < 4 1 < t < 4

0.11

-2.23

-4.57

-6.91

-9.25

-11.60

-13.94

-16.28

-18.62

-20.96

4 5 6
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- 0.94 6

-6.69

-14.32 5

-21.96

-29.59

-37.22

-44.85 3

-52.99

-60.12 2

-67.75

2 3 4 5 6

33.59

29.97

26.34

22.72

19.10

15.48

11.86

8.24

9.62

1.00



PUTTING IT ALL TOGETHER
CANTILEVER BEAM

.0

0.8.

LL 0.6.
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- determini
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DESIGN UNDER UNCERTAINTY
APPLICATION

Minimize weight subject to thrust and thermal and structural failure
constraints
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