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UQ IS ESSENTIAL TO ALL MODELING EFFORTS

“All models are wrong; the practical
question is how wrong do they have
to be to not be useful” [BD86]

m Modeling is essential for
understanding, predicting and
designing complex systems

m Poor quality modeling can have
catastrophic consequences

= Different models of the same

system can produce vastly
different predictions

Credible modeling requires
assessment of uncertainties

Prediction of ice-sheet velocities

TNE
I
g/

Regional contributions to sea-level rise

Global Mean Sea Level Change (m)

2000 2200 2300 2400 2
Year

Predictions of sea-level rise from high-profile studies



APPLICATIONS

Material engineering

fires

°
£

— reference

°

°
b

Groundwater flow

variance of x;
o

°

Learning governing equations from
data

<

Biology and public health

Acoustic testing



UQ WORKFLOW
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CERTIFYING UQ ANALYSES

Define objective
Define Qol
Identify sources of uncertainty

Parameterize sources of
uncertainty

Define metrics

Condition prior uncertainty on
data (inverse UQ)

Propagate posterior uncertainty
through model to compute
defined metrics (forward UQ)

Validate estimates of uncertainty

Design, prediction, discovery
Sea level rise
Forcing, friction, geometry

[ Probabilistic, interval, fuzzy
arithmetic

VaR, CVaR
[@ Condition initial condition,
friction on surface velocities

Monte Carlo sampling,
Probabilistic arithmetic,
Surrogates

[ Does uncertainty estimates
“bound” data



DEFINE OBJECTIVE AND QOI

Prediction of sea-level rise Aerospace certification
» Inform decision making » Certify system as safe
m Low accuracy requirements m High accuracy requirements

= Multiple Qol - Thrust,

m Single Qol - sea level rise I
gle Q structural reliability, ...

Focusing on a handful of well-defined Qol and significantly reduce the
computational cost and data requirements of UQ



IDENTIFYING SOURCES OF UNCERTAINTY

All potential sources of uncertainty
must be documented

m Parametric uncertainty
(uncertain conditions)
» Forcing, boundary conditions,
rate parameters, etc.

» Model for uncertainty (known
unknowns and unknown
unknowns)

» Impact should be quantified
during validation

Complexity of model should be
continually evaluated. Less complex
models can facilitate more accurate

estimates of uncertainty

ice-sheet

Lateral boundary T,

N Basal boundary Fﬂ

m Parametric - initial ice velocities
u, forcing b, geometry H, basal
friction (

= Model form - Calving process,
horizontal velocities, basal
hydrology, unknown missing
physics



CHARACTERIZATION OF UNCERTAINTY

Model uncertainties must be
parameterized

The parameterization chosen
(lumped, field, etc.) can
significantly effect results

The information provided (PDF,
bounds, etc.) impacts
interpretability of results

Often little thought is given to
this step

Chosen parameterization must be
well justified and/or sensitivity of
Qol uncertainty to the chosen

parameterization must be
. . Different distributions (Gaussian random fields with
|nV€St|gated different correlations)




DEFINING MEASURES OF UNCERTAINTY

Measures used to communicate uncertainty must be tailored to
stakeholder needs

Need to determine if stakeholder cares about average performance or
avoiding certain outcomes.

2.0 (M) 151 — VaRa(\)
: —_— () — VaR,(Az) : 4
: —— CVaRu(\)) : P
15 g

1.0{ == CVaR,(As) S

0.0

—0.5

05 0.0 0.5 1.0 15 0.0 0.2
A

VaRs()\) = inf{\ € A | F\(\) > 6} CVaRu(

/ VaRs(A
=X

The choice or measure will impact the most efficient approach for
quantifying uncertainty



INVERSE UQ

We can improve estimates of uncertainty and reduce impact of prior
distributions by conditioning on observational data.

—7
& x10 ‘ 4
- T
5 T (2,2)
3

4
a3 &2
{18 o

o

2.6 2.8 3.0 3.2
E x107

Probabilistic inference can be used to determine the input uncertainty
that is in some sense consistent with observations. Bayesian inference is
popular but there are a number of alternatives.



OPTIMAL EXPERIMENTAL DESIGN (OED)

Data are not equally informative

6 d0=*

6 - 3
5 - (2.2)
5 - o (3,2)
4 - (23)
4
&3 &3
a a
2 2
1 1
0 0
2.6 2.8 3.0 3.2 2 3 4 5
E x107 foRE,X)Y)

One should acquire data that maximize information gain whilst
minimizing cost of experimentation.

Use measure of change in uncertainty

u TA
mp log pry e
A

KL(ry in3)i= [

A



FORWARD UQ

Given parameterization of input uncertainty estimate their impact on
output Qol

Inner wall shape

‘Wall thicknesses

T TGS
.

The appropriate approach depends on chosen uncertainty measures,
accuracy requirements, number of uncertain parameters, “smoothness”
of input-output map



SENSITIVITY ANALYSIS

Sensitivity analysis (SA) is often an important phase of uncertainty
quantification. SA can help
m |dentify sources that significantly impact uncertainty in predictions
= |dentify sources that are constrained by data

= Be used to guide dimension reduction and reduce the cost of UQ

0.10

. Mass
m— Thrust

= Load layer failure
mmm Thermal layer failure

0.08

SA is often only applied to model parameters, however it can be
generalized to investigate impact of assumptions, e.g. prior distributions,
and the relative importance of components within a larger system.



VALIDATION

* Data
— Mean prediction
100 . Posterior uncertainty

Uncertainty estimates must be validated

m Interpolation - validate estimates on
independent data set under same

conditions.
» Wrong assumptions such as incorrect error R
model (likelihood in inference) can lead to Galissian error model

unjustified confidence.

o Data

—— Mean prediction
Model error

mmm Posterior uncertainty

used to calibrate uncertainty 100
m Extrapolation - validate estimates under
different conditions.
» Models validated in interpolation regime can 107
fail miserably under new scenarios

Embedded error models can limit over .

confidence and improve extrapolation Embedded error model
[SHN19]
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UQ METHODS TAXONOMY

Uncertainty quantification (UQ) is not a post-processing
step. UQ provides a framework for improving credibility
and requires close collaboration with modelling teams

Use estimates of through the entirety of product development
uncertainty to inform
design and qualification
of engineered systems
using rigorous
connections between
regret and risk

DECISION MAKING UNDER
UNCERTAINTY




ALGORITHMIC CHALLENGES

Cost: High-fidelity simulation is expensive. Must compute statistics
from limited number of samples (simulations).

High-Dimensionality: Computational cost is often amplified as number
of uncertainties increases.

Inference: Prior estimates of uncertainty can be overly conservative.
Need to condition probabilistic estimates on observed data.

Data Acquisition: Determine experiments which are most informative.

Model Form Error: Incorporate model inadequacy into uncertainty
estimates

Inner wall shape
Wall thicknesses

Stringer locations




FUNCTION APPROXIMATION




FORWARD UNCERTAINTY QUANTIFICATION
FUNCTION APPROXIMATION

Inner wall shape
Wall thicknesses

u~ i (A) TR 1 (Qa(d)
Lk

QD) = Qu(d) |

Must compute statistics from limited number of samples (simulations)
Computational cost is amplified as number of uncertainties increases



MULTIVARIATE POLYNOMIAL INTERPOLATION

TENSOR-PRODUCT INTERPOLATION

Define a set of univariate points

Zh, =D, ) d=1,...k

Univariate Lagrange polynomials

MBg (@) Q
Ad— A
¢a;(0a) = ] <

i=1,i%j

D0

Multivariate interpolant is given by

Qa,ﬁ Z Qa )\(J H ¢z JJd >\d O

J<B

Theorem

@ @ ’I"N_T/k
Jou - Gucl ., oo



DELAYING THE CURSE OF DIMENSIONALITY
SPARSE GRID INTERPOLATION

BeT

o= ()

I(n) = {B | (max(0,n — 1) < [|BlL <n—k—2} . O “ . ‘l.l

Theorem [BNROO

< Ci.,N, - (10g N)(T+2)(k 1)+1

L(A)



DENSITY ESTIMATION

SAMPLING ON SPARSE GRIDS

/ ‘

“Error in puéh—forwafd using isotropic level-n CC sparse grid satisfies

Q <@ log M \ 5% —r (r2) (k—1)+1
I*2 @) - 2 (Qn(n)HLm(A)sc(( )T 4 O N 10w N) )




WEIGHTED APPROXIMATION

HANDLING DEPENDENT PROBABILITY MEASURES

= Sparse grids can be used effectively for \/\/\/\

independent random variables

» Sparse grids can be improved upon when
using dependent measures

Univariate weighted Leja

Let C, := max,er ”g“(g), and € := |lu — ﬁg||L5, then sequence
lu—dgllz, < CiPe

= Sample complexity can be reduced by
allocating samples in regions of
high-probability while maintaining stability:
» Leja sequences - polynomial approximation
» power function sets - radial basis
functions/Gaussian processes

Q'Q).u 0.2 0.4 0.6 0.8 10

Multivariate weighted Leja
sequence



DELAYING THE CURSE OF DIMENSIONALITY

LOW-RANK TENSOR DECOMPOSITIONS

The canonical tensor decomposition represents a tensor as the sum of
outer product of d vectors

T
A= E V1 000y
=1

= @rrr

Number of samples required grows quadratically with rank r and linearly
with dimension d and number of univariate bases p [GJ18]



DELAYING THE CURSE OF DIMENSIONALITY

SPARSE APPROXIMATION

Approximate function with small number of
nonzero terms ;@) = i, adi (A
s=#{il |a;| > &}

ly -minimization (NP HARD)
minllallo s.t.1If = fallz < €

l; -minimization (Finds sparse solution under
certain conditions)
minflally s.¢.lIf = fallz < €

If a function is sparse the
number of samples required to
compute the coefficients only
grows linearly with dimension

Sampling strategies for weighted probability spaces are needed [JNZ17]



FUNCTION APPROXIMATION
SUMMARY

Goal

Build approximations from limited simulation data

Challenge

Growth of samples required can grow exponentially
with dimension (curse of dimensionality) Findimost swarse
representation

Solution p—

m Exploit structure in function "y, /

m Sample in regions of high-probability whilst ‘ //// )
maximizing conditioning .

Methods

i Find low-rank
m Sparse grids (smoothness) [JR13, NJ14] ~ representation

m Compressive sensing (sparsity) [JES15, INZ17]
m Low-rank decompositions (separability) [GJ18]



MULTI-FIDELITY MODELING




MULTI-FIDELITY MODELING
BALANCING SOURCES OF ERROR

Multi-fidelity modeling leverages simulations of lower-fidelity models of
reduced cost to increase the tractability of sampling/approximating a
high-fidelity model

_ 0 <lo-3 da —
o=l = Ja= 0l * oGl
= 7

To minimize simulation cost we should balance physical error (1) with
stochastic error (). l.e. only sample highest fidelity model when stochas-
tic error is smaller than deterministic error [JW15]

If models ensemble forms a hierarchy, i.e.
HQa — QH — 0 as maxa — 00
sparse grids can be naturally extended to

multi-fidelity context
[HANTT16, dBR17, JEGG18]




MULTI-INDEX SPARSE GRIDS

Despite lack of smoothness guarantees
MISC can reduce cost by orders of
magnitude

stochastic and interpolation errors
be refining in both spaces

Balance

1S = frlle=m

1f = £l

13

3

e w . ww
Wark

Adaptively refine to minimize error Adaptivity can be thought of using SA
to increase efficiency of UQ

cost

-1 0 1

-1 0 1




CONTROL VARIATE MONTE CARLO
FUNDAMENTALS

The MC estimate of the mean

N
Z (A@)

Central Limit Theorem implies error normally distributed with variance
NV[Qq], as N — .

Leverage correlations of low-fidelity models to reduce variance of
estimator.

Q%Y = Qo+ (@n — 1)
Given ro samples of Qa and r,, of Qn, variance in ng is

VIQSY] = (1 - =T (@]

Tkl

where p correlation between Q) and Q.



CONTROL VARIATE MONTE CARLO

A GENERALIZED FRAMEWORK

For multiple models the CV estimator is ~ .
Qo —Q+ZvaZQa— o) = Qa+9A&

acA

Theorem [GGEJ18

The Optimal CV weights are
~v* = —Cov [&, 5] - Cov [&, Q]

Multi-level MC (MLMC) is a control variate algorithm A = {0,..., L},
Y= (17'--v1)T

£ [0r] = [0 + Y E [0 0]
=1
Theorem [GGEJ18

Regardless of number of models M, variance of MLMC satisfies

VIQMMY] < (1 — 2, )VIG]
Pmax 1S max correlation of Qp with @Q;, i =0,..., L — 1




Variance reduction for fixed high-fidelity samples of @ as a function of
numbers of samples per level r;(x) = 207 for 4 low-fidelity models

MLMC
5 100 - —— W-MLMC -
) MFMC
2 10-1 ACV-IS
= —+— ACV-MF
S
g 1072 -
=
3
D
v 10734
S
i§‘ 10744 ocv-3
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MULTIFIDELITY MODELING

EXPLOITING DIFFERENT MODEL RELATIONSHIPS

Use Bayesian networks to efficiently compute Bayesian regression basis
coefficients. Bayesian generalization of MLMV and CVMC

Represent each model with polynomial basis with coefficients 6;.

Estimate high-fidelity 6 using graph covariance on all models 6.
(@)

() 0!

W——— ) @& » BE ® ®

Conianco

...... oo




MULTIFIDELITY MODELING
SUMMARY

Goal
Use ensemble of models to reduce errors in statistics @

(o] (%)
Challenge @ WGE ® o

precsion

Relationship between models may not be known

Solution
m Learn and exploit relationship between models

u Allocate samples between models to balance
deterministic and stochastic errors

Methods

m Variance reduction methods (MLMC, CVMC)
[GEGJ18, GGEJ18]

= Multi-index approximation [JEGG18]

= Bayesian network learning [GJGE18]




INVERSE UNCERTAINTY QUANTIFICATION




PARAMETER INFERENCE

Deterministic Inversion Stochastic Inversion

Q
Find parameter values that Find probability of parameters
produce data. lll posed must producing data. Prior distribution

impose regularization. is a form of regularization [Stul0].



REDUCING UNCERTAINTY USING DATA

We can reduce estimates of uncertainty and improve the performance
of design whilst still satisfying constraints.

x10~7
6

% (2,2)

PDF
w e
PDF
(3]

%)

2.6 2.8 3.0 3.2 4.0

45 50 55
B X107 foR.E.X\Y)

Can we determine the probability density that when push forward through
a model reproduces a given density on the observations?



A NEW APPROACH FOR INVERSION
PuUsH-FORWARD BASED INFERENCE

Theorem [BJW18b
The consistent updated density is

TN =mh ()2

Algorithm: Approximating the Push-forward of the Prior

Given a set of samples from the prior density: {\;}},.
Evaluate the model and compute the Qols: ¢; = Q(\;).

Use the set of Qols and use a standard technique, such as a kernel
density method, to estimate wg(q).



EXAMPLE
A SIMPLE NON-LINEAR SYSTEM




EXAMPLE

A SIMPLE NON-LINEAR SYSTEM

— Push-forward of priof]

12

2
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10
1 8
6
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o
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0 01 02 03 04 05 ne .
Push-forward of Initial




EXAMPLE

A SIMPLE NON-LINEAR SYSTEM

25, 16
— Push-forward of priof]

12

2
12

18]
10
1 8
6

05|
4

o
2|

57

05 068 07

0 01 02 03 04 ne .
Push-forward of Initial

14
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03
Observe



EXAMPLE

A SIMPLE NON-LINEAR SYSTEM

08 085 09 095 1

Inltlal

25, o
g
2
7
16| 6
3
1
4
0§ 3
2
0
1
E o
078 08 085 09 085

Updated

— Push-forward of prior

01 02 03 04 05 06 07

Push forward of Initial

18y
—Observed|
14
12|
10
8
8|
4
2
01 02 03 04 05 06 07

Observed



UTILIZING SURROGATE MODELS

What happens when we use a surrogate model to compute the
push-forward

/\ / D
Qs
o : o Qs (n)
< <)

A1 Q1

Bad Surrogate

Theorem [BJW18c

The error in the updated density using an isotropic level-n CC sparse
grid satisfies

74 ) = 7" N pray < € (( )2”"” + Oy N7 (log N) r+2) (k= 1)+1)



EXAMPLE

GAUSSIAN PEAKS

15 2 25 3 0 02 04 06 08 1

Gaussian peaks function Density on observations  Contours in A

u We let A = [0,1)2 and consider a sum of Gaussian peaks.
» The initial density is uniform over A.

m The goal is to investigate how the accuracy of the surrogate model
affects the updated density.



EXAMPLE

GAUSSIAN PEAKS

Level 2 (17 pts)  Level 3 (49 pts)  Level 4 (97 pts)  Level 5 (161 pts)

Qs(N)

7]_5)\05&()\)

Samples
from
posterior

n(q) and
3 ®* (q)

ko
A



REsisTivE MHD PROBLEM

VMS stabilized finite element
approximation

Qol is the average induced magnetic
energy.

1 2 2
Q= 2%/(3 + B2) dQ

Treat 4 input parameters as uncertain
with uniform prior
Use LHS study with 100 samples

Build Gaussian process regression model
as surrogate

Use 50,000 samples of surrogate to
compute push-forward of prior

Parameter | Min. Max.

Viscosity 1.0E-3 1.0E-2
Vol. source | 1.0E-1 5.0E-1
Resistivity | 1.0E-1 1.0El
Density 1.0E-1 1.0E1



RESISTIVE MHD PROBLEM

We assume a Gaussian density for the Qol with mean 1.55E-3 and 10%
standard deviation.

3000 r : : -
—— Push—forward Prior
— Push-forward Post (normal)
2600+ —— Observed
20001 h
16001 E
1000+ 1
500f g
/Ji&
0 . A .




INVERSE UNCERTAINTY QUANTIFICATION
SUMMARY

Goal

Condition estimates of uncertainty on experimental
data

Challenge

Develop new formulations and reduce sample
complexity

Solution

= Find input measure whose push-forward matches
observed density
= Reduce inverse problem to one forward solve

Methods

m Bayesian inference
m Push-forward based inference [BJW18a, BJW18c]




DATA ACQUISITION




OPTIMAL EXPERIMENTAL DESIGN (OED)

Data are not equally informative

x10~"

6 - )
5 . (2.2)
5 . 7 (3.2)

- 7 (2,3)

2.6 2.8 3.0 3.2 2

3 4 5
E x107 f(R.E,X,Y)

How does one select the maximize information gain whilst minimizing
cost of experimentation.

Use measure of change in uncertainty

U
KL(my : wx) ::/ 7y log W—? dpa.
A TA



INFORMATION THEORETIC DESIGN

OED must select a design before experimental data become available.

In the absence of data, we use the simulation model to quantify the
information gain of a given experimental design for all possible
realizations of data for that design.

Let O denote the space of densities that may be observed in reality

0= {N(]E[Tl’g] + TV[W%]1/2,0'2) :17 € {-1,0, 1}} ;

x10°7

2.6 2.8 3.0 3.2 3.5 4.0

4.5 5.0 5.5
E x107 f(RE X)Y)



Expected Information Gain

EIG(Q / KL(d)w%(d)dup.

Given samples from push-forward:
q(]) = Q(A(]))Compute

1 N m2(QAY)) T2 (QAM))
Io(t) ~ v 21 72 (Q(M)) log( 2(Q(®))
OED definition

Let Q% € Q be a specific design in space of all
possible designs, then OED solves

‘
——

°Pt .— arg max E(Ip-=).
Q 3o (Io)

We would choose (2,2)

6

PDF
w

o

PDF
e e

-

X107

ERERE]
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DATA ACQUISITION
SUMMARY

Goal

Determine data that maximizes reduction in
uncertainty whilst minimizing cost

Challenge

Requires solving many inverse problems

Solution

m Use push-forward based inference - only one
forward problem required
m Use gradient based optimization

Methods
» OED using SVD of Jacobians [BJP'18]
» OED using Push-forward based inference [WWJ17]



DESIGN AND DECISION MAKING UNDER
UNCERTAINTY




A SIMPLE MOTIVATING EXAMPLE
CANTILEVER BEAM

L Y
X
t f—
—
w
6L (X Y 4L3 X2 Yz
=1—-— =4+ =) > =1 == >
A Ruwt <w * t) 20 f2(3) 52535Ewt Y wt T 20
Uncertainty Symbol Prior
Yield stress N (40000, 2000)

Young's modulus
Horizontal load
Vertical Load

N (2.9¢7, 1.45¢6)
N(500, 100)
N(1000, 100)

<o




DESIGN UNDER UNCERTAINTY

Deterministic Design Design under uncertainty

argmin wt argmin wt
w,t w,t

fi(A) 20 P(fi(A) <0) <6
f2(A) >0 P(fa(X) £0) <6y
1<w<4 1<t<4 1<w<4 1<t<4

T [ — 1.01-

= deterministic -

0.8 0.8
L 06 L 06
S 8

0.4 0.4

0.2 0.2

00 —0.02 0.00 0.02 0.04 0.06 fhos —0.1 0.0

H(R.E,X.Y) fr(R,E.X)Y)




PUTTING IT ALL TOGETHER
CANTILEVER BEAM

0.11 0.94

—2.23 ~6.69 33.59
—4.57 —14.32 29.97
—6.91 ~21.96 26.34
-9.25 ~29.59 22.72
—11.60 —-37.22 19.10
—13.94 —14.85 15.48
—16.28 —52.49 11.86
—18.62 —60.12 8.24
—20.96 —67.75 4.62

1.00



PUTTING IT ALL TOGETHER

CANTILEVER BEAM

T
LO{ =— prior 1.0
—— updated wt =803
e il | 0.8 { =S
L 06 L 06
o [a)
o o
0.4 0.4
0.2 0.2
0.0 .0
—0.02  0.00 0.02 0.04 0.06 ( —0.2 —0.1 0.0
filR,E,X,Y) f(R,E,X,Y)
40
. prior -
W updated [t =803
B deterministic
30 [ur=813)
520
a
10
0

—0.025 0.000 0.025 0.050 0.075 0.100 -02  —0.1 0.0 0.1 0.2
fi(R,E,X,Y) fH(R.E.X.Y)



DESIGN UNDER UNCERTAINTY
APPLICATION

Minimize weight subject to thrust and thermal and structural failure
constraints
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