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Abstract— Knowledge graph embedding (KGE) learns latent
vector representations of named entities (i.e., vertices) and
relations (i.e., edge labels) of knowledge graphs. Herein, we
address two problems in KGE. First, relations may belong to one
or multiple categories, such as functional, symmetric, transitive,
reflexive, and so forth; thus, relation categories are not exclusive.
Some relation categories cause non-trivial challenges for KGE.
Second, we found that zero gradients happen frequently in many
translation based embedding methods such as TransE and its
variations. To solve these problems, we propose i) converting
a knowledge graph into a bipartite graph, although we do not
physically convert the graph but rather use an equivalent trick;
ii) using multiple vector representations for a relation; and iii)
using a new hinge loss based on energy ratio (rather than energy
gap) that does not cause zero gradients. We show that our method
significantly improves the quality of embedding.
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1 INTRODUCTION

Knowledge graphs constructed after processing texts such
as web pages are widely used in question answering and
web search. They are considered as a way to give machines
intelligence.

Knowledge graph embedding (KGE) maps entities (i.e.,
vertices) and relations (i.e., edge labels) of knowledge graphs
into a d-dimensional vector space. Thus, a vertex v (resp. a
relation r) is represented by a vector v (resp. r) — we use
boldface to denote vectors. Given a triple (v, r, u), where v and
u are entities and r is a relation, f(v,r) &~ u if the triple is
true. In other words, r translates v into u after a certain vector
operation f. This type of KGE methods is called translation
based method and it is yet the most popular one although many
non-translation based methods [13], [14], [14], [19] were re-
cently proposed. For instance, (v = Trump, r» = isPresidentOf,

Noseong Park is the corresponding author.

u = USA) is one such triple and TransE [2] uses vector
addition for the calculation of f(v,r) such that v +r ~ u
(see Figure [[la for an example of TransE embedding).

Many different KGE methods using different vector op-
erations (sometimes neural network operations) have been
proposed [1]-[4], [6], [8]-[13], [15]-[19], [21].

However, there are still a couple of problems to solve. First,
there exist several non-exclusive relation categories, such as
functional, reflexive, transitive, symmetric, and so forth, and
previous approaches are not effective in embedding relations
that belong to multiple relation categories. For instance, “is
relative of” in Figure [I.b is both symmetric and transitive and
hard to embed all the six triples correctly with existing meth-
ods. Second, zero gradients happen frequently. 25%~75% of
gradients were zero in our tests with many KGE methods.

a) Non-exclusive relation categories.: Authors of [21]
considered symmetric and transitive relations separately.
HolE [13] and ComplEx [15] are also able to consider some
relation categories — for instance, the correlation operator
used in HolE is not commutative and suitable to embed sym-
metric relations. However, relation categories are not exclusive
and a relation can belong to multiple categories. Therefore,
their methods that separately consider a subset of categories
partially solve the problem, as a matter of fact. None of
existing works discuss about this non-exclusive property of
relations. We embed these relations by learning multiple vector
representations for each relation after converting a knowledge
graph into a bipartite graph. Our algorithm TransB is named
after the bipartite conversion.

b) Zero gradient problem (ZGP).: Back-propagation is
a popular method to train KGE methods. We observed many
zero gradients during the stochastic gradient descent (SGD)
updates in TransE and its many variations [1], [8], [9], [L1],
[17], [18], [21]. Once zero gradients happen, there are no
updates of vectors. Those translation based methods are very
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Fig. 1: (a) An example of TransE embedding. (b) An example
of a symmetric and transitive relation. “isRelativeOf” is one of
the most difficult relations to embed. Almost all existing KGE
methods cannot smoothly embed this case (see Example 3.2
for more detailed descriptions).

popular currently and we improve their training method by
proposing a new loss function that is free from the zero
gradient problem (ZGP). In Theorems [3.3]and 3.4, we present
the rigorous proofs of the cases where the ZGP occurs in
TransE and its variations. Our proposed algorithm TransB
uses the new loss function.

ComplEx [15] also showed that its log-likelihood based loss
function tends to perform better than existing loss definitions.
They showed that their loss definition works well in experi-
ments without theoretical grounds. However, we theoretically
prove why existing loss definition is sub-optimal and the
proposed one is better. Our TransB equipped with the new
loss definition outperforms many existing methods including
ComplEx.

In our experiments with two standard knowledge graphs
FB15K and WNI18, TransB achieved the best accuracy (the
filtered mean rank of 37 in FB15K and the filterd Hits@ 10 of
96.9% in WN18), compared to state-of-the-art KGE methods.

2 RELATED WORK

A knowledge can be represented by a triple (v,r, u),
where v and u are named entities and r is a relation, for
example, (Trump, isPresidentOf, USA). A collection of such
triples constitutes an extremely large connected graph, namely,
knowledge graph, denoted as G = (V,€,L), where V is a
set of vertices (i.e., named entities), £ is a set of edges (i.e.,
relationships), and each edge is labeled by a relation r € L.

KGE maps vertices and relations onto a d-dimensional
vector space and infers missing triples. We use a bold character
v € R? (resp. r € RY) to denote a d x 1 vector representation
(column vector) of a vertex v (resp. a relation r). x[;; means
the i-th scalar element of x.

TransE, SE, and SME [1]-[3] are the most popular and
pioneering works. These works proposed embedding frame-
works based on the concept of energy. The energy of a
triple means the uncertainty (or error) of the triple in a given
graph structure. Thus, the higher the energy is, the greater the
uncertainty (or error) is.

Definition 2.1 (Energy): Given a triple ¢ = (v,r,u), the
energy of ¢ is defined as follows:

D e(v,r,u) = ||[v+1r —u||y or 2 in TransE[]

2) e(v,r,u) = go(r,v)T - gu(r,u), where g, and g, are

linear or bilinear functions in SME.

3) e(v,r,u) = ||[r1v — reul|1 or 2, Where ry and r, are left

and right projection matrices? representing 7 in SE.

Example 2.2 (TransE): In Figure [Il.a, v, r, and u (on the left
side) are mapped into the 3-dimensional space (on the right
side). v + r, represented by the blue vertex, is the predicted
position of v’s neighbor connected through r. Thus, the energy
lv4+r —u|| refers to the distance between the blue vertex and
u in the feature space. Given (v = Trump, r = isPresidentOf,
u = USA), for instance, the sum of two vectors representing
‘Trump’ and ‘isPresidentOf” should be close to the vector
representing ‘US’ because the triple is true. (]

TransE has the most preferred energy definition for its
simplicity and good accuracy, and many variations of TransE
exist [6], [8], [9], [1L], [17], [18], [20], [21]. Thus, our
descriptions and examples will also use TransE as the default
energy definition, but we will compare with SE, SME, and many
others in our experiments.

KGE learns vertex and relation vector representations by
minimizing the following hinge loss function. Note that we
can use any TransE, SE, and SME energy definitions in the
loss function. In fact, all existing works’ overall algorithms
are more or less identical except for the energy definitions.

yEES Z Z max (0,7 +e(t™) —e()), (D

tteEt—eN(tt)

where -y is a margin set by user, £ is a set of triples (i.e., edges
in £) and MV (t") is a set of negative triples derived from a
true triple t* € £. t— € N(¢t*) differs from ¢* only in one
vertex. Please see the following true and derived negative triple
examples.

Example 2.3 (Negative triples): We present two negative
triples derived from one true triple. (Trump, isPresidentOf,
UK) and (Bill Gates, isPresidentOf, USA) are negative triples
derived from (Trump, isPresidentOf, USA). O

There also exist many TransE’s variations such as
TransR [11], TransD [8], TransH [17], TransG [18],
TransF [6], etc.

3 PROBLEM STATEMENT

We introduce two problems associated with existing KGE
methods. In the next section, we describe our proposed meth-
ods to address the two problems.

3.1 Non-exclusive relation categories

We consider the following non-exclusive categorization sys-
tem of relations: functional, symmetric, transitive, reflexive,
and so forth. This classification is widely used in the field of
logic programming and the Semantic Web where the concept
of knowledge graph (or base) was created.

Definition 3.1 (Relation categories): A relation r is classi-
fied as follows:

Y- |lx (resp. || - ||2) refers to the £1-norm (resp. £2-norm) of a vector.
2 After vectorization, a matrix can still be represented by a vector.



1) Symmetric: if (v,r,u) implies (u,r,v). For exam-
ple, isFriendOf is a symmetric relation because
(v,isFriendO f,u) implies (u,isFriendOf,v).

2) Reflexive: if v = wu is the case given (v,r,u). For
example, knows can be a reflexive relation because one
knows oneself.

3) Transitive: if (v,7,u) is implied by two triples (v, r, w)
and (w,r,u). For example, “isRelativeOf” is a tran-
sitive relation. (v,isRelativeOf,u) is implied by
(v, isRelativeO f,w) and (w,isRelativeO f,u).

4) Functional: if u is unique for a given v of (v,r,u). For
example, isPresidentO f is a functional relation because
one person can serve as president of only one country.

5) There also exist some other types such as inverse func-
tional, irreflexive, antisymmetric, etc.

The first three categories create non-trivial challenges for
KGE. In particular, the reflexive category is very difficult to
embed because its source and target are the same. This requires
a zero relation vector, which is not desired. In 1.8K triples of
FB15K, their two end vertices are the same, i.e., reflexive.

To further complicate the situation, the relation categories
are not exclusive, i.e., a relation may belong to multiple
categories. For example, “isRelativeOf™ is both symmetric and
transitive and cannot be correctly embedded in any of the
existing methods. In [21], the authors proposed a method for
exclusive symmetric or transitive cases. However, they did not
consider the case that a relation has multiple categories.

This overlapping relation category problem frequently oc-
curs. For instance, 19K triples of FB15K fall into the joint
category of symmetric and transitive.

Example 3.2 (isRelativeOf relation): In Figure [Ilb, there
are three completely connected vertices. KGE requires low
energy for all the triples in this example. However, it is
impossible in existing works. For example, e(v,r,u) and
e(u,r,v) cannot be minimized simultaneously in almost all
methods introduced in Section 2. To embed (v,r,u) and
(u,r,v) simultaneously in TransE, for example, ||[v+r—ul| =
|lu+r —v]|| = 0. However, this is possible only if v ~ u and
r ~ 0 that are not correct representations. This is the same
in many other methods. Even with the enhancements of [13],
[15], [21], smoothly embedding all six triples is impossible.
For instance, in HolE [13] it is still required that v ~ u
to embed triples between v and w and between w and u.
However, this is not the ideal to embed triples between v and
U. O

We propose two solutions: converting into a bipartite graph
and learning multiple vector representations for each relation.

3.2 Zero gradient problem (ZGP)

We found that the gradients of the energy margin loss in
Equation (I}) can be zero if the ¢;-norm is used. In fact, the
{o-norm is not used in many KGE methods. For instance,
check the implementation code’| of TransG, one of the most
advanced translation methods. Its line number 216 in the link is

3 Click to see the implementation code.

to update the vector representation of a source vertex (called
“head” in their codes). They use only the gradients of the
{1-norm and didn’t implement the ¢5-norm at all. Likewise,
almost all TransE’s variations use only the ¢;-norm because
it gives better performance in the majority of cases in their
experiments. Thus, our theorem raises a critical issue in the
state-of-the-art training method.

Theorem 3.3: Suppose the energy margin loss £ in Equa-
tion (1). Given t* = (v,r,u), t~ = (v,r,v) and the TransE’s
energy function based on the ¢;-norm, Vy e(t™) —e(t™),
i.e., the gradient w.r.t. i-th element of v, will be 0 if
sgn(| vy +rp —up|) = sgn(|vy +rp —ujyl), where sgn(z)
returns the sign of x. Note that this theorem states a sufficient
condition of vaﬁ =0.

Proof: We first prove for TransE, and then we prove for
it variations. Let f = e(t*) — e(t™), where t+ = (v,r,u) and

t = (v,r,u). Thus, f = ||[v+r—ul; — [v+r—1|:.
Using the chain rule and % = la«il = sgn(z), the gradient

w.r.t. i-th element of v can be calculated as follows™:
Vyuf = sgn(vy + ) — up) — sgn(vy +rp — up)- )

This implies that if their signs are the same, i.e., sgn (v} +
ry — ug) = sgn(vy + ) — ufﬂ), then Vy, f = 0. This
happens very frequently. If u;) and uy;, are two random values,
for instance, the zero gradient probability will be 50%. One
significance of the problem is that Vy, f is mainly decided
by two different values uj; and up, instead of v(ij- In our
experiments, we could observe that 25%~72% of gradients
are zero.

This is still the case for many variations of TransE that
involve matrix multiplications, such as TransR, TransH,
TransD, and so forth. They use projection matrices to trans-
form v and u. Because of space constraints, we will prove for
TransR, but our theorem can also be applied to others.

In TransR, e(v,r,u) = | M, v +r — M,ul|, where M, is a
transformation matrix associated with r. Thus, f = | M, v +
r — Myu|; — |Myv +r — M,u||;. The gradient of f w.r.t.
V(i can be derived as follows:

Vo f =sgn(Mrpvig + D vy — Mogaug)

J
3)
— sgn(My.q vy + Z Ty — ]\/[r[:i]ul[i])7
g

where M,.[.;) is i-th column vector of the transformation matrix
M,.

Note that the two terms in Equation (3) are the same except
for uj) and ufi]. As shown, Vv[i]f = 0 under the same
condition that the signs are equal in both terms. [ ]

Theorem 3.4: Vye(tt) —e(t™) can also be 0 when t* =
(v,7,u) and t~ = (v', r,u), i.e., the source vertex v is changed
to v’ to create a negative triple t~. (Its proof is almost the same
as the previous one.)

4 Click to see an example, where v = (a,d), r = (b,e), u = (c, f) and
u’ = (g, h), i.e., two dimensional vectors for simplicity.



The above two theorems state that, given t* = (v,r,u),
Vg £ (resp. Vy, L) can be zero when the target (resp.
source) vertex is perturbed in its negative triple sample.

In stochastic gradient descent, each dimension of v or u is
independently updated, i.e., vjy = v — Ir - Vy, £, where Ir
is a learning rate. Note that other dimensions except for ¢ are
not closely related to updating v ;).

Thus, many true-negative pairs (that meet the specified zero-
gradient condition in the above theorems) do not update uyj
or vj. This causes two problems: i) a considerable amount
of gradient computation is actually useless, and ii) vector
representations may not be fully optimized.

When checking Vy L for each vertex v in FBISK
with TransE, TransH, TransG, and so on, we observed
that 25%~72% elements of the gradient matrix’| are zero in
average during the entire training period. This means that at
most 75% elements of vector representations are not updated
even after huge computation. Be careful that some elements
of a vector representation can still be updated. However, many
elements are not updated, which is suboptimal.

4 PROPOSED METHOD TO ADDRESS NON-EXCLUSIVE
RELATION CATEGORY PROBLEM

To address the non-exclusive relation category problem, we
1) convert a knowledge graph into a bipartite graph containing
the same knowledge — however, we do not physically convert
the graph but rather utilize an equivalent implementation trick
that will be introduced later — and ii) learn multiple vector
representations for each relation.

In particular, the bipartite graph conversion makes the
multiple vector representation learning much easier than that
without the bipartite conversion.

4.1 Bipartite graph conversion

For the conversion, we divide each vertex v into v, and vy:
vs will appear only in the source vertex position of triples and
v in the target vertex position.

The main advantage of the bipartite graph approach is
the decoupling of edges that are incident in the original
knowledge graph. For example, two symmetric triples (u, r, v)
and (v,r,u) can easily be embedded by TransE after the
decoupling because ||us + r — v¢|| and ||[vs + r — ug| do
not share any vertex representations. Therefore, this bipartite
conversion is effective at embedding symmetric relations.
After the conversion, however, the bipartite graph has twice
as many vertices, which may delay the training process and
increase the GPU memory requirement.

Instead, we only learn one linear layer and v € R%. Given
a relation r and a vertex v, we require vy = Linear(r &
vs), where @ means the concatenation of two vectors, and
Linear(-) is the linear layer we train whose input and output
dimensions are 2d and d respectively. This linear layer trick
implies that the bipartite conversion is specific to the relation r

5An (4,7) element of the gradient matrix is VV[J.]E, where v is an i-th
vector in the matrix.
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Fig. 2: (a) A knowledge graph where r1 is a reflexive relation
and 72 is a transitive relation. (b) Its edge-colored bipartite
graph for the relation r2 — note that edges have different
colors when they share a vertex (i.e., incident edges). This
edge-coloring task should be performed for each relation, and
this coloring result implies that 2 vector representations are
enough for r2. (c) The edge-coloring result of Figure [I.b
without the bipartite conversion, where we need 6 colors.
(d) The edge-coloring result of Figure [Ilb after the bipartite
conversion. Note that we need 3 colors. The bipartite graph
conversion can reduce the number of colors required, which
is the reason why we do the edge-coloring after the bipartite
conversion.

(because we do concatenate with r), and v varies depending
on 7 given a fixed vector vs.

The proposed bipartite conversion is not only to reduce
the number of parameters that we have to learn but also to
prevent the case that vg (resp. v¢) becomes any arbitrary vector
representation when v (resp. t) does not appear in the source
(resp. target) position of triples .

4.2 Edge-coloring for multiple vector representations

The bipartite graph approach is effective to embed sym-
metric relations but not complete for others. As we discussed
in Example 3.2, one vector representation for one relation
may not be sufficient so we learn a set of multiple vector
representations R = {rg,rq,--- } given a relation . However,
we have to suppress the use of too many vector representations
for a relation for potential overfitting and efficiency issues.
This creates an important trade-off issue. We found that the
minimum number of vector representations for a relation can
be deterministically calculated, and its calculation in the
bipartite graph is considerably easier than in the original
knowledge graph.

The edge-coloring problem is to color incident edges
with different colors and is very well studied for bipartite



graphs [7]. Thus, we run the edge-coloring algorithm after
constructing a bipartite graph. We perform the bipartite con-
version and edge-coloring for each relation to know the exact
number of colors (vector representations) needed to embed
the relation. The number of used colors is the same as the
number of vector representations for the relation such that all
incident edges that have the same relation can be decoupled
for embedding.

In particular, the bipartite graph conversion reduces the
number of colors required in the edge coloring process, which
is the reason why we run the edge coloring algorithm after
the bipartite conversion. See Example #.2] below to see how
this is the case.

and
IR|
e(v,r,u) = Z P(ri| vs ®uy) - ||vs +1i — uel|
i=1
IR|
= P(ri| vs ®uy) - ||vs + 11 — Linear(r; @ u)]|.
i=1

&)

TransG also learns multiple vectors for each relation but
mainly uses only one r; that is the closest to v to embed the
triple, i.e., min; ||r; — v||. Our softmax-based definition does
not have this restriction.

It has already been proven that a simple online edge-

Example 4.1 (Edge-coloring after Bipartite graph ConverSion)éoloring algorithm performs well [7] and that A (the max

In Figure [2.a, a knowledge graph that consists of four triples
is presented: one triple for “rl1” and three for “r2”. Note
that “r1” is reflexive and “r2” is transitive. After converting
this knowledge graph into the bipartite graph in Figure 2.b
and performing edge coloring, we know that 2 vector
representations are sufficient to map all three triples that have
“r2”. In addition, note that us’s degree is 0, which means that
there are no training cases for it. However, we can actually
learn its vector representation because uy is calculated from
ug with the linear layer. (]

degree) colors are sufficient to color all edges. This algorithm
reads and colors edges one-by-one. Given k possible colors,
an edge e is marked as failure if all colors are already con-
sumed by e’s incident edges. This simple coloring algorithm’s
competitive ratio is approximately 48%F for bipartite graphs.
In practice, the competitive ratio is higher than that of the
simple coloring algorithm. We prefer the online algorithm for
its low time-complexity O(|€]) and good performance.

The number of successfully colored edges is a good estimate
of successful embedding. For example, assume that almost all

Example 4.2 (Edge-coloring after Bipartite graph conversion)édges are successfully colored with only 3 colors, whereas

In Figure 2.d, you can see the edge-coloring result of the
example triples in Figure [I.b, one of the most problematic
cases in KGE. Using 3 colors, we can solve the edge-coloring
problem, which means 3 vector representations are enough
to embed all the triples with the “isRelativeOf” relation.
Note that Figure 2.c requires 6 colors when we do not
adopt the bipartite graph. Thus, our approach to perform the
edge-coloring after the bipartite conversion is effective in
reducing the number of vectors we have to learn for each
relation.

Because we learn 3 vector representations for the relation,
triples with different colors can be considered as different re-
lations. Thus, triples in Figure 2.d are not any more symmetric
and transitive during the embedding process. |

As shown in Figures 2.c and d, the bipartite graph con-
version is effective to reduce the number of colors (vector
representations) to be learned during the embedding process.
This is one more reason why we use the combination of the
bipartite graph conversion and edge-coloring approach.

There is still one problem. Because a relation r is repre-
sented by multiple vector representations R = {ro,ry,- - }, it
is not clear which vector we have to use to embed triples. Each
relation vector representation r; may provide very different en-
ergy level for a triple (v, 7, u). We need a stable method to have
one energy level from multiple relation vector representations.

To this end, given a triple (v,r,u), we use the softmax-
based ensemble to determine its energy level as follows:

o
et Wr;

P(ri | X) = —mr 27w “4)

IR| T W, ’
=1

A = 100 colors are required for complete coloring; this
is the case in many knowledge graphs because the degree
distribution follows a power-law distribution|. In this case, we
can let the embedding algorithm learn 3 vector representations
rather than the wasteful 100 vectors. In Table [, the detailed
coloring results are summarized. In many relations, 20 colors
were sufficient, i.e., its coloring success rate is > 80%. We
do not prefer the perfect edge-coloring to prevent over-fitting
problems. We found that the number of colors that is enough
to color around 80% of edges leads to the best embedding
result.

5 PROPOSED METHOD TO ADDRESS ZERO GRADIENT
PROBLEM

The ZGP occurs because of the opposite signs of the true
and negative triples’ energy. The following loss function is
free from this problem.

Lnew = Z

tteEt—eN(tt)

> maX(O,ZEiii—v), ©)

where v < 1.

The proposed loss function based on energy ratio requires
that a true triple’s energy should be at least 1 times smaller
than that of a negative triple. The proposed TransB uses this
loss function with the energy definition in Equation (5).

5Given k colors, at least n edges can be colored by the online algorithm,
where n = 0.48 x m and m is the number of edges successfully colored by
the optimal algorithm.

"This means that there are many low-degree vertices and a small number
of very high-degree vertices.



TABLE I: Edge-coloring results of Next-Fit, an online bipartite graph edge-coloring algorithm [7], with k& = 20. On average,
87.5% and 73.9% of edges were successfully colored with 20 colors. Relations are sorted by the coloring success rate.

FB15K WN18
Relation Max Degree|Success Rate Relation Max Degree|Success Rate

Average Case - 87.5% Average Case - 73.9%
webpage/category 3613 0.67% member_of_domain_usage 229 31.7%
webpage/topic 3590 0.67% instance_hyponym 471 56.1%
location/constraints 843 56% instance_hypernym 473 56.3%
people/lived 332 71.7% member_of_domain_topic 341 58.9%

Other relations 119 >80% Other relations 382 >82.7%

Input: Knowledge Graph G = (V, £, L), Max Epoch
max_epoch, Initial Learning Rate &
Qutput: Feature Matrix M for vertices and relations
1 M - d x n matrix with random initialization
2 Randomly initialize the weight W € R??*¢ and bias
b € R? of Linear(-)
3 while epoch < max_epoch do
4 0 < search_then_coverage(d, epoch)
5 & + random_permute (&)
6 foreach Eyqicn, € minibatch_split(€) do
7
8
9

foreach t* € &yuiep do
| N(t*) + sample_negative_triples(t™)
M=M-0 x VMEH(‘LU

10 W =W —§ X VwLlecw
11 b =b —= % Vel

12 epoch + +

13 return M

Algorithm 1: The proposed KGE algorithm. All red parts
are closely related to our contributions.

Theorem 5.1: Ly¢,, does not have the problem of zero
gradients.
Proof: We sketch the idea of the proof. Whereas x —y =
(x £e)— (y £e), & is not equal to ;iz even though the
difference € is very small. In general, the number of training
true-negative triple pairs is large. Thus, the sum of many small
non-zero gradients can contribute to the embedding process.
|
ComplEx [15] also proposed a new loss function based on
log-likelihood — they did not theoretically prove what are
existing methods’ problems though. However, we theoretically
identify what is the most critical problem in the energy margin
based loss and our TransB based on the proposed energy
ratio loss outperforms ComplEx in all cases with non-trivial
margins.

6 EMBEDDING ALGORITHM

We present the learning algorithm in Algorithm [I. Key parts
are highlighted in red. Let M be a d x n feature matrix, where
d is the dimension of the feature space and n < |V|+ A|€| is
the number of vector representations of vertices and relations
that we have to learn, i.e., each column of M is a vector
representation. In addition to them, we also have to learn one

linear layer to convert vg into vy but its space overheads
are negligible in comparison with the space of the vector
representations.

We randomly initialize M and the weight and bias of the
linear layer (lines [ and 2)). At every epoch, we randomly per-
mute the entire triple list (line [5)). This procedure is performed
to prevent the learning procedures from being overly fitted to a
certain input sequence. After dividing the entire triple list into
many smaller mini batches, we create a set of derived negative
triples (line §). At lines [9, [I0, and [I1], we update parameters
to learn based on our proposed methods Finally, we do not
use a constant learning rate. The learning rate ¢ decays every
epoch according to the search_then_coverage approach [5].

7 EXPERIMENTS

In this section, we present our experimental environ-
ments and results. We have tested with two popular knowl-
edge graphs and 13 baseline KGE methods (SE, SME,
TransE, TransH, TransR, lppTransD, STransE, TransG,
HolE, ComplEx, SSP, ConvE, and IRN).

7.1 Experimental Environments

7.1.1 Datasets.: We use two standard benchmark datasets.
The FB15K dataset contains 483K training triples and 50K
test queries for popular 15K vertices and 1.3K relations of
FreeBase. WNI8 contains 31K training triples and 4K test
queries for 14K vertices and 18 relations of WordNet.

7.1.2 Evaluation metrics.: “Mean Rank” and “Hits@10”
are considered as two standard metrics. “Mean Rank” is the
average rank of correct answers of all testing queries (thus, a
low value is preferred), and “Hits@10” is the ratio of testing
queries whose answers are one of the top-10 lowest energy
vertices (thus, a high value is preferred).

These two evaluation metrics can be further classified into
two types: “raw” and “filtered”. “Filtered” means that true
triples are not considered when calculating rankings because
true triples contained by training or validation sets have
low energy. In the filtered metric, therefore, only previously
unknown answer candidates are considered. In the raw metric,
we consider all answer candidates regardless of whether they
are already known or not.

7.1.3 Baseline KGE methods.: We consider many KGE
methods, such as TransH, TransR, TransD, lppTransD,
TransG, TransF, HolE, ComplEx, SSP, DistMult, ANALOGY,



TABLE II: Raw Mean Rank and Raw Hits@ 10 for question answering. The best value is indicated in bold font. The proposed
method with various parameter setups are marked in blue. We mainly compare with translation-based methods in this table.
Recall that the ZGP occurs frequently in translation-based methods. Thus, we show the efficacy of our new loss function in

those translation-based methods.

FB15K WN18

Method |Raw Mean Rank|Raw Hits@10| Method |Raw Mean Rank|Raw Hits@10
SME 274 30.7% SME 526 54.7%
SE 273 28.8% SE 1,011 68.5%
TransE 243 34.9% TransE 263 75.4%
TransE-ZGP 193 48.8% TransE-ZGP 315 78.52%
TransH 212 45.7% TransH 318 75.4%
TransH-ZGP 176 49.9% TransR 232 78.3%
TransR 198 48.2% TransR-ZGP 219 80.1%
TransG 152 54.9% lppTransD 283 80.5%
TransB-10 193 54.2% TransB-10 221 81.9%
TransB-20 190 55.0% TransB-20 218 82.9%

RUGE, RGCN, and so forth. lppTransD is an enhancement of
TransD by [21]. In TransH, two slightly different negative
triple construction strategies were proposed: “unif” and “bern”.
We apply both strategies and chose the best one for all
TransE’s variations. Note that all these baseline methods use
the loss function (I)) that is weak from the ZGP.

For our TransB, we test the configurations of 10 and 20
vectors to embed a relation. Recall that in Table [[ coloring
with 20 colors (vectors) show good performance in both
knowledge graphs. We denote each configuration as TransB-
10 or TransB-20.

7.1.4 Hardware and parameter configurations.: We run the
experiments on a cluster of machines running Linux with a
Xeon 3.4 GHz CPU, 128 GB of RAM, and a Tesla K80 GPU.

We set the feature space dimension as d = 100, the initial
learning rate as 6 = 0.1 for FB15K and § = 0.01 for
W N18, and the energy ratio margin as v = {0.3,0.5, 0.8} for
our experiments. The decay rate of the search_then_coverage
learning rate scheduler is set to 0.000015, and max_epoch
is 1000. In this setting, the learning rate is decreased by at
least two orders of magnitude around the end of learning
procedures.

7.2 Experimental Results

We discuss the key results from various perspectives. Our
main target is question answering. Triple classification to
predict whether a triple is true or negative is another task to
evaluate KGE.

7.2.1 Question answering.: We first discuss the efficacy
of the proposed loss Equation (6), which is free from the
ZGP. For this purpose, we changed the loss functions of
TransE, TransH, TransR, and some other translation-based
methods to the proposed one — in this evaluation, we do not
compare with non-translation methods because the ZGP fre-
quently occurs for tanslation methods. Note that TransE-ZGP
immediately shows significant performance enhancements. In
FBI15K, TransE-ZGP achieves the best Mean Rank of 193
among all baseline methods except TransG and outperforms

TransH and TransR for Hits@10 (48.8 of TransiE-ZGP vs.
45.7 of TransH and 48.2 of TransR). This result supports
that the ZGP had caused serious problems in the existing
methods. TransH-ZGP and TransR-ZGP also exhibited non-
trivial performance improvements. In Table [I, some algo-
rithms are omitted in a dataset because their patterns are
the same as in the other dataset. TransB-20 shows the best
Hits@10 performance among all methods for the datasets. In
particular, it outperforms all other translation-based methods
for W N18 for both metrics.

In Table [II, we compare with advanced baseline methods
in terms of filtered metrics. This evaluation includes all of
translation and non-translation methods. TransG is one of
the most advanced translation methods and ComplEx, HolE,
SSP, and so forth are based on their novel architectures
different from translation methods. KGE methods removed
from Table [II) are inferior to the listed methods. In general,
SSP and IRN shows the best performance among all baseline
methods. Our TransB-20 beats them and shows the best
performance in half cases.

7.2.2 Triple classification.: Triple classification is to predict
whether a test triple is true or false knowledge. IppTransDf
showed the best performance (85.3% accuracy) among all
the baseline methods for F'B15K, and TransB-20 achieved
89.9% accuracy.

8 CONCLUSION

We tackled two problems of KGE: non-exclusive relation
categories and zero gradients. To address them, we convert
a knowledge graph into a bipartite graph without any loss
of knowledge representation. We also learn multiple vector
representations and adopt a softmax function to determine
which of them to use to embed a triple. The optimal number
of vector representations is determined after solving the edge-
coloring problem in the converted bipartite knowledge graph.
Finally, we discover that many gradients are zero in the current

8We thank authors of IppTransD for sharing their triple classification
dataset.



TABLE III: Filtered Mean Rank and Filtered Hits@10. We
show the comparison with all advanced methods, such as
TransG, STransE, HolE, ComplEx, SSP, ConvE, and IRN.
Note that many of them are not translation-based methods.

Database| Method |Filtered Mean Rank|Filtered Hits@ 10
HolE N/A 73.9%
ComplEx N/A 84.0%
SSP 82 79.0%
ConvE 64 87.3%
STransE 69 79.7%
IRN 38 92.7%
TransG 50 88.2%
FB15K| TransF 62 82.3%
DistMult N/A 82.4%
ANALOGY N/A 85.4%
RUGE N/A 86.5%
RGCN N/A 82.5%
RGCN+ N/A 84.2%
TransB-10 47 89.1%
TransB-20 37 90.9%
HolE N/A 94.9%
ComplEx N/A 94.7%
SSP 156 93.2%
ConvE 504 95.5%
STransE 206 93%
IRN 249 95.3%
WN18 | TransG 345 94.9%
TransF 198 95.3%
DistMult N/A 93.6%
ANALOGY N/A 94.7%
RGCN N/A 95.5%
RGCN+ N/A 96.4%
TransB-10 371 94.3%
TransB-20 356 96.9 %

energy margin loss function, and we propose an energy ratio
loss function that does not have the zero gradient problem.

Throughout experiments following standard evaluation pro-
tocols, we proved that the proposed TransB distinctively
outperforms other baseline methods for a couple of tasks in
all datasets.

ACKNOWLEDGEMENT

This work was supported by the National Research Council
of Science & Technology (NST) grant by the Korea govern-
ment (MSIP) (No. CRC-15-05-ETRI).

This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Government
Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energys National Nuclear Security Administration under
contract DE-NA-0003525.

(1]

[2]

[5]
[6]
[7]
[8]

[9]

[10]

(1]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

A. Bordes, X. Glorot, J. Weston, and Y. Bengio. A semantic matching
energy function for learning with multi-relational data - Application to
word-sense disambiguation. Machine Learning, 94(2):233-259, 2014.
A. Bordes, N. Usunier, A. Garcia-Durén, J. Weston, and O. Yakhnenko.
Translating Embeddings for Modeling Multi-relational Data. In Pro-
ceedings of NIPS’13, pages 2787-2795, 2013.

A. Bordes, J. Weston, R. Collobert, and Y. Bengio. Learning Structured
Embeddings of Knowledge Bases. In Proceedings of AAAI’'ll, San
Francisco, USA, 2011.

M. Chen and C. Zaniolo. Learning multi-faceted knowledge graph
embeddings for natural language processing. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence,
1JCAI-17, pages 5169-5170, 2017.

C. Darken and J. Moody. Note on learning rate schedules for stochastic
optimization. In Proceedings of NIPS’90, pages 832838, 1990.

K. Do, T. Tran, and S. Venkatesh. Knowledge Graph Embedding with
Multiple Relation Projections. ArXiv e-prints, Jan. 2018.

M. Favrholdt and N. Nielsen. On-line edge-coloring with a fixed number
of colors. Algorithmica, 35(2):176-191, 2003.

G. Ji, S. He, L. Xu, K. Liu, and J. Zhao. Knowledge graph embedding
via dynamic mapping matrix. In Proceedings of ACL’15, pages 687-696,
2015.

G. Ji, K. Liu, S. He, and J. Zhao. Knowledge graph completion with
adaptive sparse transfer matrix. In Proceedings of AAAI'16, AAAT’ 16,
pages 985-991. AAAI Press, 2016.

Y. Jia, Y. Wang, X. Jin, and X. Cheng. Path-specific knowledge graph
embedding. Knowledge-Based Systems, 151:37 — 44, 2018.

Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and
relation embeddings for knowledge graph completion. In Proceedings
of AAAI'l5, AAAT’ 15, pages 2181-2187, 2015.

D. Q. Nguyen. An overview of embedding models of entities and
relationships for knowledge base completion. ArXiv e-prints, Mar. 2017.
M. Nickel, L. Rosasco, and T. Poggio. Holographic Embeddings of
Knowledge Graphs. ArXiv e-prints, Oct. 2015.

Y. Shen, P. Huang, M. Chang, and J. Gao. Modeling large-scale struc-
tured relationships with shared memory for knowledge base completion.
In Proceedings of the 2nd Workshop on Representation Learning for
NLP, Rep4NLP@ACL 2017, Vancouver, Canada, August 3, 2017, pages
57-68, 2017.

T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard. Complex
Embeddings for Simple Link Prediction. ArXiv e-prints, June 2016.

Q. Wang, Z. Mao, B. Wang, and L. Guo. Knowledge graph embedding:
A survey of approaches and applications. [EEE Transactions on
Knowledge and Data Engineering, 29(12):2724-2743, 2017.

Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding
by translating on hyperplanes. In Proceedings of AAAI' 14, pages 1112—
1119. AAAI Press, 2014.

H. Xiao, M. Huang, Y. Hao, and X. Zhu. Transg : A generative mixture
model for knowledge graph embedding. CoRR, abs/1509.05488, 2015.
H. Xiao, M. Huang, L. Meng, and X. Zhu. SSP: semantic space
projection for knowledge graph embedding with text descriptions. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, February 4-9, 2017, San Francisco, California, USA., pages
3104-3110, 2017.

H. Xiao, M. Huang, and X. Zhu. From one point to a manifold:
Knowledge graph embedding for precise link prediction. In Proceedings
of IJCAI'16, pages 1315-1321. IJCAI/AAAI Press, 2016.

H. Yoon, H. Song, S. Park, and S. Park. A translation-based knowledge
graph embedding preserving logical property of relations. In Proceed-
ings of NAACL’16, pages 907-916, 2016.



