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2 1 Additive Manufacturing Produces Inherent Variability

(J. Madison, T. lvanoff, O. Underwood, SNL)
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For AM metal structures, we manufacture the materials at the
same time we manufacture the structure.

We have inherent variability, in addition to traditional sources of
(fine-scale) variability, that drives uncertainty in structural
response.
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3 1 Objectives of This Work

• Develop understanding of what defects in what combinations matter.

• Develop understanding of the level of fidelity necessary to make "qualifyinr statements.

• Develop a validated, predictive modeling capability to readily compute metal additive
manufactured (AM) material/structural performance and reliability for component qualification.

• Develop a collaborative experimental-computational project that enables agile response to
customer needs for metal AM materials/structures.

Initial porosity

*

Final fracture surface

St
re

ss
 (
M
P
a
)
 

400

300

200

100

Strain (%)

Accurately estimating margins requires a capability to first
characterize, then propagate the inherent variability.

defect



4 Outline

Hierarchical Multiscale Approach

Low Fidelity Model Description

High Fidelity Model Description

Application to Tensile Specimens

Ongoing work: Validation in hollow tubes with intentional defects

Conclusions



5 Hierarchical Approach

Low
Fidelity
Model 
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For hotspot i, iterate.

Repeat for all hotspots.

Low-fidelity Probability of Failure

- - 10 SH021

- - 80 2210311

- - 40 21201,4

- - 80 21201,4

— 10 2120-21. mean

— 20 82021 at mean

— 40 2-2021 at mean

— 80 9HON1 at mean

2800 3000 3200 3400 3600 3900 4000
Peak Load (N),

Hot-spot selection & prioritization

PF 
(L) =

P' L
1-1

hotspots

P(L a )P (a )

PF
(L).  

1=>

fidelity
ai) prediction

•

**we assume hot-spots are independent for now Multiscale calculation



6 Low Fidelity Model — Porosity Overlay

• Account for the observed porosity with a damage
state variable (void-volume fraction)

• Allows for statistical approach to predict behavior
when CT data is unavailable.

• We used the approach for the 3rd Sandia Fracture
Challenge:
• Porosity seed indicated by s number, i.e. s123 is a

different realization than s127517
• For the same calibration number (Cal 1), a different

porosity seed yields a different crack path

s123 Cal II

r1W1

g*Oin

sI275I7 Cal 1

MLE fit

All data

log_strain_yy_1

1.400e+00
1.050e+00
7.000e-01
3.500e-01
0.000e+00

•

Johnson et al. 1JF 2019



7  High Fidelity Model

• Explicitly include large pores in geometry and mesh models

Can use tetrahedral or hexahedral elements (Sculpt)

• We use an unstructured tetrahedral mesh

vaid4401

29 um resolution
1.9 um voxel size

Variability and uncertainty in pore geometry
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A Tale of Two CT's
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15.E um resolution
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If you think CT eliminates (some of the) uncertainty, be careful!
High Fidelity Model
(1.5e6 elements)



8 I Available Data for Characterization and Validation

Three AlSi10Mg plates
0 Laser power varies from 100% (optimal), 75%, and 50%

Corresponds w/ 0.47%, 0.66%, and 5.12% porosity, respectively

One SS 316 plate printed at Sandia

Components- pristine a 3 flaw types
Powder obelisk
Density cube

Tensile bars (multiple sizes)
Fracture samples

Metallography/Charpy samples
Fracture toughness A1Si10Mg,

Ç. = 40 MPaVm

No flaws



9 1 Measurements to Develop the Method —Tensile Specimens
Tensile test stress-strain data

• A rack of (25) lmm x lmm cross-section AlSi10Mg LPBF tensile
bars

- CT images for each specimen before loading provide
Surface geometry

Internal porosity

Tensile response — Stress-strain

Optical characterization of the resulting fracture surface

Surface features
(CT)

Internal Pores (CT)

Fracture surfaces
(optical scans)
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Boyce et al., Advanced Engineering
Materials 2617



10 I Calibration to Tensile Specimens

Voce hardening model with power-law breakdown
strain rate multiplier on hardening

Decaying exponential on equivalent plastic strain
saturates

Power law breakdown hardening rate multiplier helps
capture gradual softening after early peak load

Strain rate data taken from literature (Rosenthal et al.
2017)
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11 Damage Model Accounts for Growth of Existing Pores and Pore Nucleation

2 pm
EHT = 10.00 kV WD = 18.8 MITI Signal A = SE2 Width = 57.08 pm

Void Nucleation 

Fine scale voids (< 1pm) indicate nucleation
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= 77ep + 1\12
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Void Growth 
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12 I Analysis of the CT and optical data
V
o
l
u
m
e
:
 s
ma
ll
 

It is impractical to consider all the pores.

Which pores are important?
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13 Low Fidelity and High Fidelity Models

Vcutoff applied to sa
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14 Low Fidelity Predictions vs. High Fidelity Prediction
applied to sample 8Vaitoff

Lofi Mesh 0 Lofi Mesh 1 Lofi Mesh 2 Spherical pores Ellip po



1 5 I Low and High Fidelity vs. Experiment
applied to sample 8Vaitoff

Lofi Mesh 0 Lofi Mesh 1

7.5

6.5

5.5

4.5

3.5

2.5

Experiment Spherical pores Ellip po



Multiscale Model: High Fidelity Mesh in Hotspot Concurrently Coupled
16 With Surrounding Low Fidelity Mesh

Hotspot Detection in Lofi
Mesh

z
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Constraints

Coupled Response
with Higher

Accuracy in Hotspot
-520k elements,

100 cpus

2.8e+08

2.6e+8

— 2.4e+8

— 2.2e+8

— 2e+8

— 1.8e+8

— 1.6e+8

1.4e+8

1.2e+8

9.1e+07

V
o
n
 M
is
es
 (
P
a
)
 

High Fidelity Results
1.5M elements, 360

cpus



17 I Ongoing Effort: Validation Tubes with Intentional Defects
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Low Fidelity Results Show Different Hotspot Locations for High Fidelity
18 Mesh to be Applied
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19 Pore Distributions on Low Fidelity Tube Mesh
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20 Pore Distributions on Low Fidelity Tube Mesh Lead to Crack Initiation
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21 Conclusions

• AM Materials often have significant material variability

• Different defect structures affect crack initiation and propagation

• Low fidelity model is fast and accurate in initial simulations

• High fidelity model more accurately reflects pore geometry

• Hierarchical approach has potential to be efficient simulation method for qualification modeling

Future Work

• Perform coupled multiscale simulations on tube geometries

• Apply residual stress predictions as initial conditions
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24 I Multiscale Model Response Differs Slightly from Full Fidelity Model
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25 I Models Bridging Length Scales
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Powder Spreading
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Powder Behavior
M. Wilson
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Solidification Scale Thermal 
M. Martinez, B. Trembacki, D. Moser
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Mesoscale Texture/Solid Mechanics
T. Rodgers, J. Brown, K. Ford
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Length Scale (m)

Build Scale Thermal + Mechanics 
K. Johnson, K. Ford, L. Beghini, M. Stender B J. Bishop

Build Scale Microstructure
T. Rodgers, J. Madison
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Modeling the Effect of Pores and Surface Roughness From High-Resolution CT Scan in
26 Follow-up Investigation

Displacement (mm)

Simulation results from —13 million element
meshes generated from CT scans.

Slide Courtesy: Kyle Karlson, Guy Berge(


