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Energy and Water S stem Dynnmics

Climate Variability

and Change
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MOODY'S
INVESTORS SERVICE

Announcement: Moodys: Climate change is forecast to heighten US exposure
to economic loss placing short- and long-term credit pressure on US states and
local governments

Global Credil Research - 28 Nov 2017

New Vork. November 28. 2017 -- The growing effects of climate change including dimbing global
temperatures. and rising sea levels. are forec.ast to have an increasing economic impact on US slate and local
issuers This will be a growing negative credo factor Nr issuers without sufficent adaptaten and mitigation
strategies. Moody's Investors Service says in a new report.

The report daferentates between climate trends. which are a longer-term shift in the climate over several
decades. versus Ornate shock. defined as extreme weather events ,ke natural dtsasters. floods. and droughts
which are exacerbated by clmate trends. Our credit analysts oonsiders the effects of climate change when we
believe a meaningful credn impact es highly likely to occur and not be mitigated by issuer actions. even rf Nes is
a number of years in the future.

Oimate shocks or extreme weather events have sharp. mrrediate and o.ervable impacts on an issuer's
infrastructure. economy and revenue base. and environment As such we factor these impacts into our
analysis of an issuer's economy. focal posden and capital infrastructure. as well as management's ability to
marshal resources and implement strategies to drive r.overy.

Exveme weather pattems exacerbated by changing climate trends include higher rates of coastal storm
damage. 

ller 
more frequent droughts. and severe heat waves These events can also cause economic challenges

Itke sma crop yelds. infrastructure damage. higher emmy demands. and escalated recovery costs.

"Whole we anticipate states and municpalities wtll adopt mngalan strategi. fOr Nese evente• mete to emetec
them could also became an moor, credit challenge: Michael Wertz a Moodys Vice President says. 'Our
analysis of economic strength and diversity. access to liquidity and levers to raise addrtenal revenue are also
key to our assessment of climate nsks as is evaluating asset management and governance'

One example of a mate shock armng rating change was when Hurricane Katrina struck the City of New
Oyeans (A3 stable). In addrbon to widespread infrastructure damage the cays revenue declined significantly
and a large percentage of its population permanently tel New Orleans

'US issuer resilience to extreme dimate events is enhanced by a vanety of local. state and federal tools to
improve immediate respOnse and long-term recovery from climate shocks: WertZ SayS

For issuers. the availabillty of state and federal resources is an important element that broadens the response
capabilities of local governments and ther ability to mittgate credit impacts As well. all municipalities can
benefit frorn the deployment of broader state and federal aid partxcularly disaster aid from the Federal
Emergency Management Agency IFEMAI to .1p with economic recOvery•

Moodys analysts weigh the Impact of donate nsks ynth stales and municypalibes' preparedness and planning
for these changes when we are analyzing credit refines Analysts for municipal issuers with higher exposure to
danate nsks will also focus on current and future mrtgabon steps and how these steps will impact the issuer's
overall profile when assigning ratings.

The report 'Environmental Risks — Eya/ualing the impact of chinate change m US stale and local issuers: is
mcodys subsmbers at NV ByeveW moodys corn researchclocurnentcontempage esp.'

docid=P9M1071949.

MOODY'S
INVESTORS SERVICE

02018 Moody s Cmpoeten. Moody s Investors Sennce. Inc . MooCy s Analybcs. Inc anceor their licensors and
affiliates (Collectively. -MOODY S') All rights reeerved

• Energy-Water systems are a
particularly good example of a
connected infrastructure system
that is inherently complex,
interdependent, and co-evolving
requiring multi-sector, multi-scale
analysis.

• These infrastructure systems are
under unprecedented stress from
growing demands, extreme
weather and aging.

• Identifying vulnerabilities and cost
effective adaptive measures is a
first order science challenge.

2017 costliest
weather year: $3066

CNN Jan. 8, 2018
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IM3 Vision

Develop a flexible and integrated modeling framework that captures

the dynamic multi-scale interactions among energy, water, land,

weather/climate, socioeconomics, infrastructure, and other sectors

Use this framework to study the vulnerability and resilience of

coupled human and natural systems from local to continental scales

under scenarios that include short-term shocks, long-term stresses, and

feedbacks associated with human decision-making

Explore how different model configurations, levels of complexity,

multi-model coupling strategies, and spatiotemporal resolutions

influence simulation fidelity and the propagation of uncertainties across a

range of sectors, scales, and scenarios



Integrating Experim 

Coupling multiple
sectors, with
emphasis on:

Energy Sector,

Water Sector,

Linkages to land
and population.

Also coupling models
across scales:

Global,

Regional,

Watershed or
asset.
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Study Site

Provisioning Watershed

• San Juan is example of resource provisioning
watershed exporting much of the water,
energy and other goods produced.

• Potential for cascading impacts
"downstream".

• Growth in water use is not driven by new
development by full utilization of committed
water rights.

San Juan Basi
Schematic

San Juan
Power Plant

Critical
Habitat

ArtAr,

Irrigated
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San Juan
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\, ,
Four Corners
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Navajo-Gallup
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San Juan River Basin
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Flows

Electricity
Exports
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Transfers

Oil and Gas
Exports

o San Juan River in Four Corners Region of Southwestern
United States.

o Runoff originates in San Juan Mountains (83%). Largely
snow melt dominated system.

o Primary management feature is Navajo Reservoir.
o Major water users include:

• Native American
• Irrigation,
• Multiple power plants and limited hydropower,
• Municipalities,
• Interbasin transfers



Multi-Model Platfor 

o Framework that links natural and
engineered systems to evaluate climate
vulnerabilities and adaptive measures:

Multiple interacting sectors, and

Multiple forcings.
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Scenario Analysis 

Planned experiments provide a
unique opportunity to understand
how interdependent multi-sector,
multi-scale systems respond to
changes in drought.
How response differs among impact
metrics

Non-Local Local
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Instream Flows
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Hydrology

( Variable Infiltration Capacity
(VIC) model at 1/16th degree

New MODIS data, including
time series for each grid cell
for albedo, vegetation spacing
and LAI

Cell Energy and Moisture Fluxes
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,, / •
Et L

E

Canopy
Layer 0

Layer 1

Layer 2

Grid Cell Vegetation Coverage

Variable infiltration Curve
i=~„~~. - rk),"')]

6.„3-i+P

Fractional Area

Vhfu,W0+1n4

A
Baseflow Curve

WI

mv,v 4
Layer 2 Soil Moisture, W2

o Downscaling using Mutivariate Adaptive
Constructive Analogues (MACA) data set
(Abatzaglou and Brown, 2011)



River Reservoir Ro

o San Juan Baseline
Model constructed
in RiverWare

o Colorado reservoirs
and priority
administration
modeled with
StateMod

oThree reservoirs

o 87 River reaches

o 30 Water users
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Climate Impact on
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Bennett, K.E., Tidwell, V.C., Llewellyn, D., Behery, S., Barrett, L., Stansbury, M. and Middleton,
R.S., Threats to a Colorado River provisioning basin under climate and societal scenarios, Environ.
Res. Commun. (1), DOI: 10.1088/2515-7620/ab4028.



Navajo Reservoir S
o Limited impact for all but one climate model
(25% decrease).

o Slight increase in annual variability.

Some models result in increased Navajo
storage (6-9%).

One case challenges current water
management regime.

Navajo Reservoir Storage
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San Juan Basin Sh
o Based on basin Shortage Sharing Agreement.

c One shortage projected under historic climate
with full water rights utilization.

c Only one climate model projects a significant
occurrence of shortage.

Two climate models project no future
shortages.
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Environmental Flovillt=M7
Measured at the Four Corners Gauge
o Days above 5000cfs

o March-July

o Target is 21 days per year.

One model results in increased violations.

Three climate models result in more years
meeting target flows.
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San Juan Chama
o All climate models result in reduced diversions
to the San Juan-Chama Project (1-40%).

Year-to-year variability in diversions is reduced.

Additional analysis is required to determine
potential shortages to downstream contractors.
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Discharge to  Color
o San Juan discharge is on average 15% of
Colorado flow at Lee's Ferry

o Two models project decreasing flow (20-30%).

Three models project an increase in flows (6-
26%).
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Summary of Impacts

oUncertainty: Significant differences in projected
impacts were consistently evident across climate
models.

o Uneven Impacts: Impacts differ significantly by
metric due to position in basin and the institutional
controls dictating its operations.

oNon-Local Impacts: Local effects of climate
change spilled over to other basins:
• Lower Colorado River, and

• San Juan- Chama diversion to Rio Grande Basin.
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Impacts to Power (
Localized water changes affect local power
generation patterns that cascade through
other regions
Power system operations changes lead to
transfers of costs, water usage, and
emissions from one region to multiple
others
Power system models alone cannot
capture dynamics of water shortages
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Impacts on Capacity Expa ision

o How will climate impact decisions on where to place
new power plants?

o Under current investigation.

o Decisions are couched in context of other
constraints such as:

o Cost of alternative generation technologies,

o Demand,

o Transmission, and

o Policies. Installed Ca•acit in WECC
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(Farmer) Reac 

Current models assume essentially static water use,
Agent Based Modeling (ABM) allows integration of
dynamics of human decision making.

Bayesian Inference Network
(;roup3.b_Downstream of San Juan River (Navajo Reservoir, dr)
region) with Shortage Sharing

Precipitation:

Downstream

Navajo Reservoir

Precipitation:

Upstream

Navajo Reservoir
A2

Navajo Reservoir

Elevation

Flow Violation:

At the outlet of San

Juan River Basin

VIIP Diversion:

At the Navajo

Reservoir

Shortage Sharing:

Systematic Sharing

Rule in RiverWare

Decision:

Irrigation Area

Cost-Loss Model

Decision

[Action 1-P P

Increase C

Decreas 0
e

L

1. ABM is coupled (two-way)
with RiverWare to evaluate
impact of human behavior
uncertainty on water
resources management.

2. The ABM quantifies decision-
making process with
Bayesian Inference Network
(risk taking) linked to a Cost-
Loss Model (economic
context for decision).

3. The decision variables of
agents' are annual irrigated
area which are affected by
snowpack forecast, reservoir
water level and water
management policy

Hyun JY, SY Huang, YCE Yang, V Tidwell, and J Macknick. 2019. "Using a Coupled Agent-Based
Modeling Approach to Analyze the Role of Risk Perception in Water Management Decisions,"
Hydrology and Earth System Science, 23:2261-2278. DOI: 10.5194/ hess-23-2261 -2019.

Unique to analysis was treatment of agent's
perception of risk. Calibration results suggest
farmers in region are highly risk adverse.
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Identify metrics

• Verify comparable
simulations

• Interpret differences

• Develop scaling rules

Agent Scaling Emulators


