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Cementitious Materials and
Carbonate Rocks

• Cementitious materials are widely used
in many applications of radioactive

waste (IAEA 2013 TECDOC):

• Deep-intermediate borehole

disposal

• Waste forms

• Seals for retarding waste transport

• Engineered barriers

• Construction assemblies MO{

Ham • will should be imided whist polltdon
Manhole Cover

Concrete
Apron

o Unl

https://goo.gl/images/Nm2P9a

http://www.briodydrilling.co
m/services/borehole-
grouting-by-tremie-pipe-
method-including-use-of-well-
grouting-band-8

http://cementbarriers.org/ap
plications/

• Cement interactions with the surrounding lithology will create

a highly alkaline local environment, which may cause

alteration and impact radionuclide transport.



Expected Contribution to IDB

Design and Safety Case
IIIA .T emax:,

• Define the chemically appropriate cement formulation for the

host rocks in Israel

• Provide mechanistic basis and validated models for reactions

and diffusive mass transport at representative rock-cement

interfaces

• Define expected contaminant migration factors (e.g., effective

R and Kd) from cement waste form to rock formation

• Provide input on the safety margin for unsaturated cement

environment (strength, formulation and migration)



Objectives

Project goal: Characterize interactions of doped cement
materials (Low pH cements and CEM I) with carbonate geologic
strata (i.e., limestone, marl, chalk, oil shale and phosphatrite) of
the northern Negev, Israel.

Specific objectives:

i) Use laboratory experiments to characterize the reactions and
transport of radionuclides (dopants) and primary matrix
constituents at the interface between carbonate rock types
and cementitious barriers; and,

ii) Demonstrate multiphase diffusion reactive transport models
for parameter estimation and to simulate long-term
interactions considering potential future disposal in different
Negev geologic formations.



Rocks and cement

L.characterization —

porosity, mineral

assemblages

Data from
cement/rock

interface
experiments

Project Approach IIIA .V
IV

National Nuclear Security Administration

1313 tests (L/S = 10 and 1

l over range of pH) —calibration of mineral

reaction set

comparison
Cement/rockf

nterface
modeling -
prediction

1315 tests (diffusion) —

calibration of tortuosity,
verification of mineral

reaction set

_ Interface Evaluations
• 6 rock types, each with 2 cements
• Experiments — ca. 1-2 years
• Simulations

Experimental planning
Experimental data interpretation
Long-term prediction



Cements

Test Materials IIIA .T emax:,

CEM1 (OPC)

Low pH Cement

Marl

Oil Shale

Rocks

Chalk limestone

MEW
  Red  I

High OM Low OM

Phosphorite Phosphorite
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Experimental Approach IIIA .V
V kv

National Nuclear Security Administration

Batch extraction 

Pore water (approx.)

pH dependent leaching (EPA 1313)

Monolith diffusion (EPA 1315) 

Rock(6) — DI water with LiBr

Cement(2) — DI water

Rock — Cement Interface 

Diffusion tube experiments

L/S partitioning

Available content

Mineral set calibration

Constituent flux

Tortuosity

Solid phase alteration

Constituent redistribution



Experimental Methods

EPA Method 1313 

• pH dependent leaching test

• L/S of 10 completed for

rock samples and two

cement types.

• L/S = 1 in progress.

• Analysis

• Extracts analyzed using

ICP-OES, ICP-MS, TOC,

and IC. Additional

measurements include

pH, conductivity.

IIIA .V
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Cement & Rock Results pH

dependent leaching (EPA 1313)
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Experimental Methods (EPA 1315)

Method 1315
• Mass transfer rate tank

leaching test - modified for
post-test profile
characterization

Mathod 11315—Eaperhnentall set up and

1 Sample n Leaching Intervals

Monolith 
LI(all faces exposed)

Or

Compacted Granular

(1 circular face exposed)
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'/1 samples

Sample interface
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laser ablation

processiing



Results Tank leaching test

EPA 1315
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Simulation Models and Validation S A 
IF AT 4h i-Y4

Simulation Models:

• PFLOTRAN (3-D, finite element) — Field-scale simulations

• LeachXS-Orchestra (1-D, finite volume) — Parameter estimation,

analysis of laboratory results

• Gems — verification of cement thermodynamics

• PHREEEQC — model-to-model verification
25

CSH Modelling by PHREEQC and
Gems:

CSH phases thermodynamic modelling

can done using PHRREEQC and Gems

which based on different solving

methods:

• PHREEQC— Mass action method

• Gems — Gibbs energy minimization

method
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Benchmarking Study IIIA .V
IV 1104---Yii
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cement / clay rock interface:

• Benchmarking with TOUGHREACT, PHREEQC,
CRUNCH, HYTEC, ORCHESTRA, and MIN3P
(Marty et al., 2015)

• 1D PFLOTRAN model 25°C and saturated
conditions

• A period of 10,000 years was simulated

• 3 meters of OPC plug and 40 meters argillite

clay rock

Concrete Plug

(OPC)
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41 cells

Clay Rock
40 m

71 cells
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Mineral Set Calibration - Limestone Atiug,e4A
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Mineral Set Calibration CEM1 IN A Sigl
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Dependency of Constituent
Flux on Tortuosity

Monolith

11
MENNEN

Diffusion

National Nuclear Security Administration

Bath

Finite
Volume

(well mixed)

New
Leachant

Leachant refresh
at scheduled times

Leachate

Simulation conditions:

• 133 days simulated to represent 1315 tests duration

• Saturated conditions with measured porosity

• No fluxes at boundaries — diffusion only (multi-ionic diffusion)

• 1-D, 30 cells, each cell is well mixed

• Actual dimensions of monoliths
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Validation of mineral reaction set calibration (prediction of

1315 test chemistry based on mineral reaction set calibrated

by 1313 test)
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Conceptual Model
Rock/Cement Interface

Carbonation front

f f f 

Diffusion

Carbonate Rock

Local equilibrium

Model assumptions:

1. Each cell is well mixed

2. Local equilibrium

3. C-S-H ideal solid solutions with

Tobermorite and Jennite-like end-

members

4. Multi-ionic diffusion only

Cement

SA I .V , swiaW,11
IV

National Nuclear Security Administration

Model conditions for experimental case:

• 5 years simulated, saturated conditions, 30 C

• 1-D, 120 cells, Finite volume

• No fluxes at external boundaries

• Thermodynamic databases — Minteq v4; LLNL,

CEMDATA18 (Lothenbach et al. (2018))

• Initial carbonate content — based on 1313 test

• Tortuosity — calibrated values

• Porosity — measured values



Interface Models IIIA .T emax:,

Two interfaces were simulated:

1. Marl — OPC

2. Limestone— OPC

Limestone

Tortuosity (m m-1)

Porosity (%)

pH

10

7

7.8

Carbonate content high

10 30

32 15

7.7 12.9

high low
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Time=0.0417 days
Marl cement

Carbonation front advanced 0.45 cm
in 5 years
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Limestone/OPC vs. Marl/OPC
Interface Model Results

Main findings:

• Thicknesses of carbonated cement
layer is different for the two interfaces

• The thickness of the carbonated
cement layer is controlled by
bicarbonate flux from the rock.

• Constituent fluxes are controlled by

the ratio of porosity to tortuosity

• (,,°) is about 4.5 times greater for the

Marl than the Limestone — this can
account for most of the difference
between the rock-cement interface
results.

OPC ( 
0 
) = 0.0002

Carbonation
front

progress in 5
years (cm)

SA I .V , swiaW,11
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Marl-OPC
interface

0.45 0.0032
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OPC

interface
0.1

C032-

0.0007

OH-

_mr
Diffusion
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Interface Experiments V ,em% "
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Current Status:

Cements were cast on saturated rock (Oct. 2019)

6 rock types - limestone, chalk, marl, oil shale,

LOM and HOM

2 cements - OPC and low pH cement

6 samples per rock/cement interface

Curing and aging conditions:

30 °C and 100% relative humidity

Sampling time to be based on

simulation results:

Approximate times 

First sampling - February 2020 (?)

Second sampling - May 2020

Third sampling - November 2020



Future directions IIIA i.V eal64;411
IV
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Experimental

Sampling interface experiments

Leaching and interface characterization LA-ICP-MS, SEM EDS, ...

Nano indentation - Changes in material mechanical properties as a result of

interface reactions

Unsaturated reaction, moisture transport and temperature variations should

be further evaluated

Simulations

Calibration of mineral reaction sets for rock samples and low pH cement

Calibration of tortuosity based on 1315 tests for rock and cement samples

Completion of current set of interface simulations

Unsaturated reaction, moisture transport and temperature variations should

be further evaluated

Long-term behavior estimates
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