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Depolylmerization of lignin: valuation of lignols
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lonic liquids can work, but starting materials are expensive
Deep Eutectic Solvents => much cheaper

* Can incorporate catalysts

* May lead to cheaper depolymerization strategies
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What is a Deep Eutectic Solvent (DES) ?

A eutectic is a solution which freezes at a temperature that is lower than the
constituents which make up the solution
e Eutectics have many applications, including
* Solubility
* Extractions
* Solids which have high melting points can be dissolved => DES
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ZnCl, + ethylene glycol can form a DES

— 7nCl; melt
== Ethylene glycol melt
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* The eutectic point occurs at 4:1 EG:ZnCl,
* The eutectic solvent serves as a solvent for dissolving
lignin
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DES Synthesis (molar ratio Lignin solubility (120 °C) v . \ 25 ® 5
1-> ZnCl2:ChCl (2:1) semi viscous 1->ZnCl2:ChCl (2:1) ~10 wt % o . Y
2-> EG:ZnCl2 (4:1) not viscous 2-> Urea:ZnCI2 (3.5:1) 1 wt% >
3-> Urea:ZnCl2 (3.5:1) very viscous 3-> EG:ZnCI2 (4:1) >10 wt% k\ o

Lignin solubility is > 10 wt% s S I



Lignin model

B-B-linkage

B-O4 linkage




Methodology
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Shells around the nucleus are occupied by electrons

e” correlation is important in computational chemistry

Geometry optimizations (B3LYP/6-3 | +G*)
Frequencies/ZPE using B3LYP/6-3 1 +G*
Solvation included using PCM (polarized
continuum model) ethylene glycol

Zn is modeled using LANL2DZ ECP

Single point calculation using MP2/6-3 | +G*
Accuracy of B3LYP is ~ 6 kcal mol!
Accuracy of MP2 is ~ 4 kcal mol -!

B3LYP => some e correlation
MP2 => 2"d order perturbation on HF
* |Includes more e correlation



Anatomy of a Basis set
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FIG. 1. Lower parts of the full valence-Cl PECs [E(O2X 23g-)-2E(O P3)] obtained by CEEIS calculations using Dunning’s
correlation-consistent triple- and quadruple-zeta basis sets and the CBS limit.
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2 parts to a QM method
* The physics behind the calculation
* The way e- are described ]
The physics was explained in the previous slide
The e- description => basis set
Basis set => # functions used to describe C, O, H
Bigger basis sets => more accuracy (usually)
Unsuitable basis sets => large errors
6-31+G* => small but relatively accurate
* Includes diffusion functions
* Includes polarization functions (imp. charged systems)



Results: Simple dissociation

AE,,. = 38.49 kcal mol™
AE,,, (without ZnCl,) = 76.53 kcal mol?




Results: Simple dissociation cont.

AE, . =87.37 kcal mol?
AE,, . (without ZnCl,) = 85.10 kcal mol

rxn




Results: Dissociation of di-lignol

ZnCl, attacks the di-lignol by first attacking one of the aromatic
rings. It then intercolates in between the two aromatic rings,
before destroying the B-B-linkage
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Results: Dissociation of di-lighol cont.
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AE. ., =-19.93 kcal mol*
AE,. . (without ZnCl,) = 103.58 kcal mol



Results: anionic potential energy surface

Oxygen donates an e to Zn => covalent bond

Leading to a negative charge on Zn
Configuration of Zn = [Ar] 3d'°4S25S!

AE, ., = 15.33 kcal mol?
AE_ . (without ZnCl,) = 76.53 kcal mol?




Results: Anionic potential energy surface cont.




Summary

e ZnCl, can be used as a catalyst in the depolymerization of lignin

* Hydrogen bonding is potentially important to the depolymerization of lignin

* If hydrogen bonding changes (quantity, position, strength), then energetics and kinetics may change
* Other tri-lignol configurations need to be tested to understand the role hydrogen bonding plays

* The overall charge on Zn may also be important

* If Zn can take on a negative charge, the energetics and kinetics of lignin depolymerization changes

* Extension to quaternary and pentameric polymers of lignin may also be possible






