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MOTIVATION
Many geological processes may be modeled using partial dif-
ferential equations (PDEs). Such models have tremendous po-
tential to advance research in geosciences; however, their use
is frequently limited by:

• uncertainties in physical parameters in the PDE,

• limitations on data needed for calibration and validation,

• and computational complexity associated with solving
the PDEs over large spatial regions with fine resolution.

Inverse problems seek to utilize the available data to estimate
uncertain parameters in the PDEs. However, the data available
in practice is typically not adequate to estimate all parameters,
and in some cases the data itself is uncertain.

Hyper-differential sensitivity analysis is a mathematical tool,
suited for large scale applications, which augments the inverse
problem to assess the sensitivity of parameter estimates to re-
maining uncertainties.

FORMULATION
We consider deterministic inverse problems constrained by
PDEs of the form

min J(u,z,0)
u,z

s.t. c(u, z, 0) = 0

where
• J is an objective function
• c is a system of PDEs
• u are state variables (a solution of the PDEs)
• z is a uncertain parameter being estimated
• 0 are parameters and/or data which are fixed in (1)

(1)

Goal: Analyze the sensitivity of the solution of (1), the optimal
z, to perturbations in 0 , the additional uncertain parameters
ond/or data.

EXAMPLE: CONTAMINANT INVERSION
• Given sparse measurements, solve an inverse problem to

determine the contaminant source.

• Modeled by coupling equations for fluid flow in porous
media and contaminant transport, which contain uncer-
tainty parameters related to:

- material properties such as, but not limited too, per-
meability and porosity,

boundary conditions and constitutive laws for the
porous media flow PDE(s),

fluid properties of the contaminant.

• HDSA is a quantitive assessment of how the contaminant
source inversion depends upon these uncertainties.

• HDSA guides model development, data acquisition, and
uncertainty quantification

I

MATHEMATICAL FRAMEWORK
Differentiating Through the Optimality System

Given the local minima

x* (9) (u* (0) , z* (9) , À* (6))

of (1), with adjoint state A*, for a user specified 0 , the derivative
of x' (0), with respect to 0 , is given by

Dx* (6) 1C-113 (2)

where

• k denotes the Karush-Kuhn Tucker (KKT) operator, i.e.
hessian of the Lagrangian, r, with respect to (u, z, A)

• 13 denotes the mixed second derivative of r with respect
to (u, z, À) and 9

• (2) is similar to a Newton step for (1), it may be inter-
preted as the Newton step taken after perturbing 0

Defining Sensitivity Indices

• define II(u, z, À) = Pz for a projector P

• may be the identity, or a projection onto a linear sub-
space informed by the data

• define a basis {91, 92, . . . j On} for the fixed parameters

The sensitivity indices

Illpx*(79)8i I I 
I oi I

1,2, • • • ,n,

may be interpreted as the change in the optimal estimate z*
when the fixed parameter 0 is perturbed in the Oi direction.

Computational Complexity

• computing all n sensitivity indices directly is computa-
tionally intensive for large n (the typical case)

• computing the action of Dx* (0) on a perturbations 60 re-
quires solving a large linear system (applying IC')

• each matrix vector product (applying 1C) requires two lin-
ear PDE solves

• need many PDE solves to explore high dimensional pa-
rameter spaces

Algorithmic Overview

• exploit low rank structure, when present, via a truncated
Generalized Singular Value Decomposition (GSVD)

• leverage randomized algorithms to parallelize the GSVD
computation

• leverage underlying Trilinos linear algebra constructs to
parallelize PDE solves

• HDSA only requires linear PDE solves even when the
PDE model c is nonlinear

PERMEABILITY INVERSION
Tracer Injection to Estimate Permeability

min 111 (p, c; cl, 0) R(z) misfit plus regularization
p,c,

s.t.

V • ( K(z)Vp) = 0 Darcy's Law

Oc
+ V • ( €(0)Vc) K(z)Vp) • Vc S (9) Transport

at
p = /OM Pressure Dirichlet BC

K(Z)Vp • n= 0 Pressure Neuman BC

Vc • n = 0 Tracer Neuman BC
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• Compute sensitivity of the estimated permeability with
respect to observed data, tracer uncertainty, and BCs.
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Figure 1: Time snapshots of tracer concentration (in greyscale) with the data

sensitivities overlaid.
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Figure 2: Generalized sensitivities (left) and time evolution of tracer data

sensitivities (right).
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Figure 3: Pressure (in greyscale) with data sensitivities overlaid (left) and

tracer injection sensitivities (right).
Left Boundary Sensitivities
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Figure 4: Pressure dirichlet BC sensitivities.
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SOURCE INVERSION

Contaminant Source Identification

min 1 I (c, d) R(a) misfit plus regularization
p,c,

s.t.

V • ( K(0)Vp) = 0 Darcy's Law

c

Ot 
+ o (- €(69V K(69V p) • V c

= Pressure Dirichlet BC

K(6)V p • n= 0 Pressure Neuman BC

Vc • n = 0 Contaminant Neuman BC

Transport

• Compute sensitivity of the estimated source with respect
to permeability, contaminant diffusivity, and BCs.
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Figure 5: Pressure (left) and contaminant time snapshot (right).
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Figure 6: Contaminant source (left) and singular values of IIDx* (9) (right).
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F
igure 7: Permeability field (left) and dirichlet BC sensitivities (right).
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CONCLUSIONS & ACKNOWLEDGMENTS

• HDSA provides unique insights which are not given by
other sensitivity analysis approaches

• HDSA may be used to assess the relative importance of
data sources and model parameters in order to direct ex-
perimental design and model development

• HDSA may be used in a real time to provide an estimate
of uncertainty in the solution of the inverse problem
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