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MOTIVATION

Many geological processes may be modeled using partial dif-
ferential equations (PDEs). Such models have tremendous po-
tential to advance research in geosciences; however, their use
is frequently limited by:

e uncertainties in physical parameters in the PDE,
e limitations on data needed for calibration and validation,

e and computational complexity associated with solving
the PDEs over large spatial regions with fine resolution.

Inverse problems seek to utilize the available data to estimate
uncertain parameters in the PDEs. However, the data available
in practice is typically not adequate to estimate all parameters,
and in some cases the data itself is uncertain.

Hyper-ditferential sensitivity analysis is a mathematical tool,
suited for large scale applications, which augments the inverse
problem to assess the sensitivity of parameter estimates to re-
maining uncertainties.

FORMULATION

We consider deterministic inverse problems constrained by
PDEs of the form

min J(u, z, 0) (1)

U,z

s.t. c(u, z,0) =0

where

e J is an objective function

e cis a system of PDEs

e 1, are state variables (a solution of the PDE:s)

e 2 is a uncertain parameter being estimated

e () are parameters and/or data which are fixed in (1)

Goal: Analyze the sensitivity of the solution of (1), the optimal
2z, to perturbations in 6, the additional uncertain parameters
and /or data.

EXAMPLE: CONTAMINANT INVERSION

e (Given sparse measurements, solve an inverse problem to
determine the contaminant source.

e Modeled by coupling equations for fluid flow in porous
media and contaminant transport, which contain uncer-
tainty parameters related to:

- material properties such as, but not limited too, per-
meability and porosity,

- boundary conditions and constitutive laws for the
porous media flow PDE(s),

- fluid properties of the contaminant.

e HDSA is a quantitive assessment of how the contaminant
source inversion depends upon these uncertainties.

e HDSA guides model development, data acquisition, and
uncertainty quantification

MATHEMATICAL FRAMEWORK

Differentiating Through the Optimality System
Given the local minima

v"(0) = (u(0),27(0), A"(0))

of (1), with adjoint state \*, for a user specified 60, the derivative
of £*(0), with respect to 0, is given by

Dx*(0) = K 'B (2)
where

e K denotes the Karush-Kuhn Tucker (KKT) operator, i.e.
hessian of the Lagrangian, £, with respect to (u, z, \)

e 3 denotes the mixed second derivative of £ with respect
to (u,z,\) and 6

e (2) is similar to a Newton step for (1), it may be inter-
preted as the Newton step taken after perturbing 6

Defining Sensitivity Indices
e define II(u, z, \) = Pz for a projector P

¢ P may be the identity, or a projection onto a linear sub-
space informed by the data

e define a basis {01,603, ...,0,} for the fixed parameters

The sensitivity indices

_||IDa* (8)64]
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may be interpreted as the change in the optimal estimate z*
when the fixed parameter 0 is perturbed in the 6; direction.

Computational Complexity

e computing all n sensitivity indices directly is computa-
tionally intensive for large n (the typical case)

e computing the action of Dz* () on a perturbations 56 re-
quires solving a large linear system (applying K1)

e cach matrix vector product (applying K) requires two lin-
ear PDE solves

e need many PDE solves to explore high dimensional pa-
rameter spaces

Algorithmic Overview

e exploit low rank structure, when present, via a truncated
Generalized Singular Value Decomposition (GSVD)

e leverage randomized algorithms to parallelize the GSVD
computation

e leverage underlying Trilinos linear algebra constructs to
parallelize PDE solves

e HDSA only requires linear PDE solves even when the
PDE model c is nonlinear

PERMEABILITY INVERSION

Tracer Injection to Estimate Permeability

min M (p, c;d;0) + R(2) misfit plus regularization

p,C,z

s.t.

V- (=k(2)Vp) =0 Darcy’s Law

0

a—; + V- (—€(0)Ve)+ (—k(2)Vp) - Ve = 5(0) Transport
p=1(0) Pressure Dirichlet BC

— Kk(2)Vp-n=20 Pressure Neuman BC

Ve-n=0 Tracer Neuman BC

e Compute sensitivity of the estimated permeability with
respect to observed data, tracer uncertainty, and BCs.
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Figure 1: Time snapshots of tracer concentration (in greyscale) with the data

sensitivities overlaid.
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Figure 2: Generalized sensitivities (left) and time evolution of tracer data

sensitivities (right).
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Figure 3: Pressure (in greyscale) with data sensitivities overlaid (left) and

tracer injection sensitivities (right).
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Figure 4: Pressure dirichlet BC sensitivities.

SOURCE INVERSION

Contaminant Source Identification

min M (c;d) + R(z2) misfit plus regularization

p.C,2

s.t.

V- (=k(0)Vp) =0 Darcy’s Law

0

a—j LV (—e(0)Ve) + (—k(0)Vp) - Ve = S()  Transport
p=(0) Pressure Dirichlet BC

— k(0)Vp-n=20 Pressure Neuman BC

Ve-n=0 Contaminant Neuman BC

o Compute sensitivity of the estimated source with respect
to permeability, contaminant diffusivity, and BCs.
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Figure 5: Pressure (left) and contaminant time snapshot (right).
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Figure 6: Contaminant source (left) and singular values of IIDx* (0) (right).
Permeability Field Boundary Condition
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Figure 7: Permeability field (left) and dirichlet BC sensitivities (right).

CONCLUSIONS & ACKNOWLEDGMENTS

e HDSA provides unique insights which are not given by
other sensitivity analysis approaches

HDSA may be used to assess the relative importance of
data sources and model parameters in order to direct ex-

perimental design and model development

HDSA may be used in a real time to provide an estimate
of uncertainty in the solution of the inverse problem
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