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2 Crystal Plasticity-Finite Element (CP-FE) method

Polycrystalline body FE discretization

Single crystal
constitutive equations

= Yo

• Grain-level approach to materials modeling using multiscale strategies — realistic length and time scales

• Explicitly model discrete grains and slip systems based on dislocation slip

• Predicts material's heterogeneous local responses resulting from microstructure.

• More predictive than macroscopic plasticity models

• Texture evolution & plastic anisotropy
• Damage and Fracture, fatigue, void growth
• Deformation twinning, martensitic transformation, recrystallization
• Nonlocal formulations, grain boundary mechanics & grain size effects
• Metal forming
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3 I CP-FEM predictions
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4 Outline

o Mesh sensitivity in single crystal / polycrystalline CP-FEM simulations

o Polycrystalline RVE:-. in CP-FEM simulations

o Conclusions
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Lim et al., International Journal of Plasticity 121 (2019) 101-115.
Bishop et al., JOM 68 (2016) 1427-1445.
Bishop et al., Comput. Methods Appl. Mech. Engrg. 287 (2015) 262-289.
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5 Mesh sensitivity in CP-FEM simulations

FEM

CP-FEM

Error

A

Sandia
National
Laboratories

# of elements

1
23 elements
per grain

43 elements
per grain

83 elements
per grain

163 elements
per grain

Mesh sensitivity in CP-FEM:
Computationally expensive

Need to consider microstructural effects



6 CP-FEM simulation procedures

• Slip rate:
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Slip resistance:
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• Perfect hexahedral finite element mesh

• Single integration point at the center of FE

(Dislocation density based hardening)

(Slip based hardening)

ga = al + a2(Ep)" (Isotropic power-law hardening)

• Material parameters for SS304L

Hardening constants

C11 = 197.5 GPa

yo = 1 s-1

A = 0.4

go = 150 MPa

EFL = 150 MPa

C12 = 125.0 GPa

m = 0.012

po = 5.46 x 1012 rn

g, = 1100 MPa

a2 = 500 MPa

-2

C44 = 122.0 GPa P = 55.9 GPa

xl = 2x 106 ni

ho = 300 MPa

n = 0.8

ic2 =

a = 3.0



Simulations of single crystals
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8 Effects of crystal orientations
Crystal rotation along x directions after 10% isochoric deformation
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9 Mesh sensitivity crystal orientation effect
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10 Error percentages
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11 Mesh sensitivity in local variables
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12 Other effects
12

• Dislocation density based hardening: e = A,ub pP

12 i3=1

• Slip based hardening: g' = E hai-svi31.
• Isotropic power-law hardening: e = al + a2(Ep)n
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• BC2: Eyy = 0.1 and E30, rzz = —0.05

• BC3: Eja = 0.122 and Cyy = ezz = 0
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13 Mesh sensitivity in polycrystalline CP-FEM simulations
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15 I RVE size in CP-FEM simulations
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16 I Constructing interface-conformal polycrystal FE mesh

Computational/ Experimental
Voxelated 3D microstructure

Volume fractions repres
percent of grains for eal

v, = 0.73 v„ = 0.41 v, =0.4.

v, = 0.27 v, = 0.59 V, = 0.5'

v„ = 0.00 v„ = 0.55 v, = 0.3

v„ =1.00 v, = 0.45 vB = 0.6;

v„ = 0.00 v„ = 0.79 v„ =1.00

v, =1.00 V, = 0.21 vB = 0.00

, .

www.cubit.sandia.gov

Interface-conformal
hexahedral FE mesh

Perform smoothing and pillowing
to improve the mesh quality.
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Lim et al., MSMSE (2016)



17 Interface conformal mesh

•
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18 Conclusions Sandia I
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Mesh convergence in CP-FEM is very sensitive to the crystal orientation, hardening

model and applied boundary conditions.

Approximately 104 finite elements per grain are required to reasonably achieve mesh

convergence in CP-FEM simulations.

Approximately 103 grains are required to adequately reproduce polycrystalline RVEs.

Interface conformal mesh reduces error compared to voxelated mesh.
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