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Polycrystalline body FE discretization

Grain-level approach to materials modeling using multiscale strategies — realistic length and time scales
Explicitly model discrete grains and slip systems based on dislocation slip
Predicts material’s heterogeneous local responses resulting from microstructure.

More predictive than macroscopic plasticity models

» Texture evolution & plastic anisotropy

« Damage and Fracture, fatigue, void growth

« Deformation twinning, martensitic transformation, recrystallization

* Nonlocal formulations, grain boundary mechanics & grain size effects
* Metal forming
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. | Outline ml

o Mesh sensitivity in single crystal / polycrystalline CP-FEM simulations ‘
o Polycrystalline RVEs in CP-FEM simulations

o Conclusions |
Lim et al., International Journal of Plasticity 121 (2019) 101-115. ‘

Bishop et al., JOM 68 (2016) 1427-1445.
Bishop et al., Comput. Methods Appl. Mech. Engrg. 287 (2015) 262-289. |
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# of elements

16°3 elements

per grain |

83 elements
per grain

43 elements
per grain

23 elements
per grain

Computationally expensive

Mesh sensitivity in CP-FEM: Need to consider microstructural effects



Sandia I

6 | CP-FEM simulation procedures wm:‘“l

o

ay l/m
- Sliprate: y* =y (;) * Perfect hexahedral finite element mesh ‘

« Single integration point at the center of FE
Slip resistance:

12 [12
g% = Aub Z pf %= [K1 ];’ z pF - KzP“]l}"‘"l (Dislocation density based hardening)
\ 5=1

p=1

12 Y .
g% = Z ]’la‘GW'Bl- hoB = qaﬁho 1 — g_ ~ (Slip based hardening)
B s

g =aq + o (fp)" (Isotropic power-law hardening)

Hardening constants I

G; = 197.5GPa G> =125.0GPa Cy = 122.0GPa i = 55.9GPa
[ ] 2 . -1 — '
* Material parameters for SS304L Yo =1s .= 9,012
A=04 Py =546 x 1012 m~2 x = 2% 106 m™1 2 =20
g, = 150 MPa g, = 1100MPa hy = 300 MPa a=3.0

a; = 150 MPa a; = 500MPa n=038




7 | Simulations of single crystals
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10 | Error percentages
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Other effects Natioal
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Mesh sensitivity in polycrystalline CP-FEM simulations
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| RVE size in CP-FEM simulations
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Computational/Experimental Interface-conformal
Voxelated 3D microstructure hexahedral FE mesh

s | Constructing interface-conformal polycrystal FE mesh j

Perform smoothing and pillowing
to improve the mesh quality.

Volume fractions repres
percent of grains for ea

I S D G

v, =0731v,=041]v, =04]
vp=027[v,=059]|v,=0.5]

v,=000|v,=055|v,=03
v, =100 [v, =045|v, =0.6]

v,=000]v,=0.79|v,=1.00
vy =100 [v,=021]v, =000

Lim et al., MSMSE (2016)
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« | Conclusions ml

= Mesh convergence in CP-FEM is very sensitive to the crystal orientation, hardening ‘

model and applied boundary conditions.

= Approximately 104 finite elements per grain are required to reasonably achieve mesh

convergence in CP-FEM simulations.

= Approximately 103 grains are required to adequately reproduce polycrystalline RVEs.

= Interface conformal mesh reduces error compared to voxelated mesh. ‘
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