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Thermal Processing Effects on Heat Affected

Zone Liquation Cracking Susceptibility of Boron
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Stringent control of 304L alloy composition is the
cornerstone for mitigation of hot cracking risk

• Majority of prior work on 304L hot cracking is
focused on solidification cracking

• Comparatively fewer established compositional
relationships for HAZ liquation cracking.

• Weld-Critical (WC) austenitic stainless steels
have common features designed to optimize
weldability

• Secondary remelting. This can be via VAR, VIM/VAR,

or ESR

• Tight control of impurities including S, P, O, N, B

• Creq/Nieq limits to control weld solidification behavior
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A brief history of boron in WC 304L

• Historically, boron was unspecified element. Impurity control focused on S and P.

• In 2011, incoming WC 304L VAR microstructure testing showed an unknown

brown/gray phase coexisting with delta-ferrite stringers.

• This phase was eventually identified as a chromium-rich boride (M2B)

• Composition measurements found the heat contained —200 wt.ppm boron

• A limit of 20 wt.ppm B limit was implemented to eliminate boride phase in future

heats

Backscatter electron channeling
contrast image of ferrite stringer with
low-Z (dark) boride phase
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Electron Backscatter Diffraction
(EBSD) patterns ID'ing boride phase

EHT = 15 00 kV WD = 5 3 mm S.gnal A = BSO Flle Narne = repoOsh_no_etch_001 Of EHT = 15 DO kV WD = 5 4 mrn S,gnal A = BSD FIle Name = repohsh_no_etch_006 Uf

3



In 2016, chromium borides appear again in WC 304L
• Material made by different producer showed borides within ferrite stringers

• Alloy contained near the max. allowable B content of 20 wt.ppm due to intentional microalloying addition

• Additional characterization confirmed phase is boron-rich and structurally consistent with tetragonal M2B

• Concerns raised with potential weldability issues related to the presence of borides 

B = 18 wt. ppm

6-ferrite

Suspect
boride phase
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Why are borides forming in WC 304L even at 20 wt.ppm B?
• The limit of 20 wt.ppm B was implemented based on quaternary phase equilibria data from Goldschmidt (1971).

• More recent multicomponent thermodynamic simulations performed at SNL show that solubility of boron in

austenite during homogenization is closer to 5 wt.ppm!
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Gleeble hot ductility testing performed on 304L with varying boron
content
• Only the highest boron content heat (340 wt.ppm B) shows markedly decreased hot ductility indicating HAZ

cracking risk.

• For heats with <100 wt.ppm B., ductility recovers sharply on-cooling near the on-heating NDT

Custom 304L heats created with varying B content

Sample 304L - 19B (VAR) 304L - 36B (vim) 304L - 96B (vim) 304L - 340B (vim)
wt.%

B 0.0019 0.0036 0.0096 0.0340

C 0.021 <0.001 <0.001 0.003

Cr 19.45 18.84 18.94 19.01

Cu 0.11 0.13 0.13 0.14

Mn 1.42 1.54 1.52 1.50

Mo 0.09 0.12 0.11 0.09

Ni 10.24 10.26 10.10 10.32

N 0.010 0.006 0.005 0.008

P 0.019 <0.005 <0.005 <0.005

Si 0.63 0.60 0.60 0.57

S 0.001 0.002 0.003 0.003

Cr/Ni,ct,* 1.80 ^ 1.82 1.84 1.80

Gleeble hot ductility signatures for B-containing 304L 

Du
ct
il
it
y 
(
%
 Re
du

ct
io

n 
in

 A
r
e
a
)
 

100

80 -

60 --o

40 -

20

0

-------------- :es--------

•

340 wt.ppm B
OH

1

340 wt.ppm B
OC

.111 101 111

96

19

1000 1100 1200 1300 1400
Temperature (°C)

ASTM A276 304L
S+P = 0.057 wt.%
B < 5 wt.ppm
(Cr/Ni)eq = 1.85

- OH
OC

6



Autogenous welds showed differing HAZ cracking

susceptibility for LBW vs. GTAW
LBW

• Testing showed no weldability
issues for material at 20 wt.ppm
B for both GTA and laser welds

• Cracking in GTA HAZs was

observed at 340 wt.ppm B material

which is in good agreement with

Gleeble Hot Ductility Testing

• Laser welds showed considerably

less margin with respect to

cracking. HAZ cracks were

observed at 36 wt.ppm associated

with grain boundary borides

36 wt. ppm B
10 [um

Crack tip

1 pm

GTAW
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HAZ cracks

340 wt. ppm B

EHT.15.00 kV WEI. 7.5 nun Signal A•BSD Width .10.00 pm
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Path taken based on weldability testing

■ Testing showed no weldability issues for material at 20 wt.ppm B for both GTA and
laser welds

■ Cracking in GTA HAZs was observed at 340 wt.ppm B material which is in good agreement with
Gleeble Hot Ductility Testing

■ Laser welds showed considerably less margin with respect to cracking. HAZ cracks were observed at
36 wt.ppm associated with liquated grain boundary borides

■ Based on weldability data generated and known weld parameter space utilized in 
product end-use, this heat of WC304L VAR containing borides was eventually accepted 



Anomalous HAZ cracking was observed on laser-

welded WC 304L prototype parts
• Routine metallographic examination of laser welded hermetic prototype electrical feed-through assembly

revealed HAZ cracks on part that underwent brazing. The braze was performed prior to welding

• Microstructural examination of brazed part showed unexpected intergranular phase formation. This phase was
later determined to be boron-rich

•

I 
EHT = 5.00 kV WD = 10,8 mm Signal A = VP BS D1 1/1,,idth = 12.18 pm

awe aft, ilia

Low-Z intergranular boride phase. (ID'ed using TEM/EELS)

Laser welds on WC 304L parts with -20 wt.ppm B

Brazed WC 304L part WC 304L part (not brazed)
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Thermal treatment alters boride distribution

• Exposure to elevated temperature can provide opportunity for boride to
change morphology and distribution

20 pm

As-received (borides in ferrite stringers)

EFIT= 20.00 kV WD = 8.3 mm Signal A = BS(

20pm

1100°C, 1 hr.
(intergranular borides)

EHT = 5.00 kV %ND = 11.1 inn Signal A =VP BSD1 Width = 225.7 Ern

2 pm

•

EHT = 5.00 kV

/

e
/

WD = 11.1 mm Signal A = VP BS01 Width = 20.65 pmEHT = 5.00 kV WD= 11.1 mm Signal A = VP BSD1 Width = 15.60 pm
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Detail: SEM Examination of HAZ Cracks
Pulsed Laser Seam Weld on WC 304L (-20 wt.ppm B) thermally treated 1100°C, 1 hr.

100 pm
EHT = 5.00 kV WD = 11.0 mm Signal A = VP BSD1 Width = 658.7 prn

Backscatter electron channeling
contrast image shows strain
gradient around HAZ crack

20 pm
EHT = 5.00 kV WD = 11.0 mm Signal A = VP BSD1 Width = 203.4 pnn



X-ray spectral imaging of intergranular phase

• Special energy dispersive
spectroscopic analysis
conditions provide
qualitative map of boron
concentration around HAZ
grain boundaries

• Thermal treatment
resulted in grain boundary
boride film

20 pm
EHT = 5.00 kV WD = 11.0 mm Signal A = VP BSD1 Width = 203.4 pm EHT = 5.00 kV WO = 11.0 mm Signal A= VP 13501 Width = 20.55 pm



High temperature boride formation can make 304L HAZ liquation crack susceptible
with thermal treatment

0.0020 wt.%B i Sim. glass-ceramic sealing cycle
As-received — no thermal treatment (peak: 995°C; 10 minutes) 

• Autogenous weld trial indicate that 304L with small

amounts of boron (20 wt.ppm) can exhibit HAZ

cracking if subjected to heat treatment prior to

welding

• Without heat treatment, material 304L containing —20

wt.ppm B would be HAZ crack free

lncreasing time/temperature exposure

Braze sim. high-fire cycle only 1100°C; 120 min. 
(peak: 1100°C; 12 minutes) isothermal treatment 
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HAZ cracking susceptibility depends on time-temperature
history
• Continuing work to determine time-temperature dependence on weld HAZ crack susceptibility for

boride-containing 304L

• Weld cracking risk for parts that undergo glass/glass-ceramic/brazing thermal cycles need to be
evaluated on case-by-case basis due to vendor-specific high-temperature processing prior to
hermetic sealing (e.g., 'fire-off cleaning)

Autodenous laser weld trials 
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HAZ cracking susceptibility also depends on starting composition and
microstructure Cracking Response

# welds with HAZ cracks / total # welds examined

• Two heats of WC 304L were

subjected to various thermal

cycles used for brazing

• Heats had similar boron
concentration but differed in
ferrite potential and starting
ferrite content

(

2" dia. bar
Low (Cr/Ni)eq
20 wt.ppm B

4" dia. bar
High (Cr/Ni)eq
18 wt.ppm B

Fire-off (F-O) Cycle 

Fire-off Run#1
950°C — 12 minutes

0 / 50

Fire-off Run#2
950°C — 30 minutes

0 / 50

Fire-off Run#3
1000°C — 12 minutes

(110 I

0 / 50

0 / 50

0 / 50

Fire-off Run#4
970°C/20 min + 1040°C/5 min

/ 50 / 50

+ Braze (850°C Peak) 

F-O #1 + Braze

CI F50

F-O #2 + Braze

0 / 50

F-O #3 + Braze

HOj

F-O #4 + Braze

1 / 50

0 / 50

0 / 50

0 / 50

0 / 50
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Detail micrographs: F-O #4 (970C/20 min + 1040C/5 min)
Effect of alloy ferrite potential
• (Cr/Ni)eq ratio is generally used as a predictor of weld solidification mode; however, it can also be a measure of ferrite stability

in 304L. Ratio is directly proportional to ferrite potential.

• HAZ liquation cracking susceptible microstructure appears to be predicated on complete dissolution of ferrite stringers during
heat treatment
• Elimination of ferrite stringers promotes larger grain size and formation of intergranular borides—both factors increase HAZ liquation crack susceptibility

Low Ferrite Potential/Content
Most ferrite stringers eliminated after F-O#4; grain growth operative

100 pm

Many ferrite stringers persist after F-O#;4; limited grain growth

100 pm 16



Detail micrographs
Most severe condition: F-O#4 + Braze + Re-braze

• Cumulative thermal history of samples metallographically evaluated does not results in microstructural changes

to 304L VAR that result in HAZ liquation cracking

Section 2; CW; side A; Nominal Weld #2

Ferrite+boride stringers largely persist after heat treatment

•

Serrated ferrite/austenite phase boundary suggests some
operative dissolution operative as a result of heat treatment;
however, complete dissolution of stringer did not occur

lainatadas

Limited intergranular boride formation
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HAZ liquation cracks found in low ferrite potential 304L material if
subjected to high-temperature fire-off cycle (F-O-#4)
• Highest peak temperature (1040C) of F-O#4 thermal cycle resulted in microstructural changes that led to HAZ liquation

cracking susceptibility
• Ferrite+boride stringer dissolution + grain growth + intergranular Cr2B formation

• No HAZ cracks found in any other conditions with lower peak temperatures (F-0#1 — F-O#3) for this heat

D^+--tial/Conte—
Example: HAZ liquation crack found along fusion boundary
(F-O#4; Sect. 2 of 3 ;Pulsed Nominal #12)

op-

100 pm



Concluding Remarks
s a , 0 ,la i =

• If WC 304L is not thermally processed, boron concentrations up to —20 wt.ppm B do not result
in HAZ liquation cracking issues based on autogenous welds and HAZ thermophysical simulation

• Additional thermal processing of WC 304L can result in demonstrated HAZ crack susceptibility
for a material that would otherwise be immune to HAZ cracking. Materials with specification-
compliant B concentrations can be crack susceptible if thermally treated above 1000C

• HAZ cracking in thermally processed 304L appears to be associated with dissolution of
ferrite/chromium boride stringers with grain growth

• Increased boron concentration at the grain boundaries can lead to Cr2B formation/liquation and/or incipient
melting. More detailed microstructural examination is planned.

• Specification requirements for WC 304L VAR are continually evolving to take into account
manufacturing trends. Changes are being implemented to lower limit to <5 wt.ppm B to
circumvent HAZ cracking risk for material subject to thermal processing
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Controlled-B 304L heats produced to study micro-alloying effects on
weldability

Grain boundary B segregation in 316L
with 40 wt.ppm B1

100 prn

BSE Image SIMS Image

Creep-life enhanced 308 filler metal2
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• Boron content from 19 to 340 wt.ppm examined

• Small (20 lb.) vacuum induction melted (VIM) heats produced with compositions targeted to
be similar to heat originally observed containing Cr2B

• All alloys examined have low S + P impurity levels combined with high (Cr/Ni)eq ratios
expected to solidify as primary ferrite during laser welding

Sample 304L - 10B (VAR) 304L - 36B (VIM) 304 - 96B (vim) 304L - 340B (vim)

wt.%

B 0.0019 0.0036 0.0096 0.0340

C 0.021 <0.001 <0.001 0.003

Cr 19.45 18.84 18.94 19.01

Cu 0.11 0.13 0.13 0.14

Mn 1.42 1.54 1.52 1.50

Mo 0.09 0.12 0.11 0.09

Ni 10.24 10.26 10.10 10.32

N 0.010 0.006 0.005 0.008

P 0.019 <0.005 <0.005 <0.005

Si 0.63 0.60 0.60 0.57

S 0.001 0.002 0.003 0.003

Cr/NLct,* 1.80 1.82 1.84 1.80

Production-scale melt
hot worked into 4" bar

-20 lb. VIM 304L ingots.
Ingots hot rolled into 1" bar,

annealed 1100°C/1hr.

1. Karlsson, L., et al. Acta Metall. Vol. 36, No.1, 1-12, 1988
2. Kleuth, R.L., et a., Welding Journal, 65, ls-7s, 1986

*O. Hamrnar and U. Svennson, Solidification and Casting of Metals, Metal Society, London 1979.
(CrNi),„ = [Cr+1.37(Mo)+1.5(Si)+2.0(Nb)+3.0(Ti)] / INi+0.31(Mn)+22(C)+14.2(N)+Cul



Assessing Weld HAZ susceptibility: Approach

• Assessing boron micro-alloying effects on HAZ liquation cracking susceptibility will
utilize both simulative weldability testing and autogenous weld trials

#1. #2:
Evaluation of elevated temperature ductility

Gleeble Thermomechanical Simulator

Autogenous GTA and laser welds
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Gleeble Hot Ductility Test

• High-temperature ductility response of material provides insight into material weldability

• HAZ cracking generally associated with exhaustion of available ductility

NST

Stabilize before
extension

Profile for on-cooling HDT:
Profile for on-heating HDT_

Time

Schematic of Hot Ductility Signature

Temperature

Insight into sub-solidus
crack susceptibility

Insight into liquation crack
susceptibility

Sada
irmi, labfladaaamittios

Translation of Measured HDT Temperatures to
HAZ Crack Susceptible Regions (CSR) 

NST: Nil-strength temperature
NDT: Nil-ductility temperature
DRT: Ductility recovery
temperature
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nn-heating ductility signature
• Ductility decreases precipitously for B contents 96 wt. ppm around 1350°C; with the 96 wt.ppm B condition exhibiting a wider

temperature range over which ductility decreases

• Highest B condition (340 wt.ppm) demonstrated nil-ductility temperature (NDT) approximately 100°C lower than other conditions
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On-cooling ductility signature
• 19, 36, and 96 wt.ppm B specimens exhibited rapid ductility recovery on-cooling

• 340 wt.ppm B condition exhibits ductility recovery 200+°C lower than other conditions evaluated

• Longitudinal cross sections near fracture for 340 ppm needed to better understand ductility variability
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Hot ductility testing does not indicate liquation cracking risk for 304L
with < 100 wt.ppm boron
• Boron-containing 304L with < 100 wt.ppm B shows similar ductility signature as commercial ASTM

A276 304L with no B micro-alloying addition
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GTA Welds: Light optical microscopy
• Near fusion boundary HAZ liquation cracks only observed in highest B content condition

• Examination of autogenous GTA weld samples exhibits similar trend predicted by Gleeble hot ductility

19 wt. ppm B
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GTA Welds: Electron Microscopy

(340 wt. ppm B)

GTA fusion boundary

•

20 pm
EHT • 16.00 kV WD • 7_1 nIm &snag A • BED Width • 600.0 pm

Eli7. 1603 kV W1:0 • 7.1 rnrn signal A• BSC

Liquated austenite boundary

• r.
1/4 

/

1 pm
EHT • 1600 kV WD • 7A mm Signal A • BSD Wldth • 10 CO pm

2 0m
EHT• WOO IV WO • 7.1 mni Signal A - BST. Wkkh • 2E00 prn

Liquated ferrite stringer



CW Laser Welds: Light Optical Microscopy
• Intermittent HAZ cracking observed in laser welds at significantly lower B content compared to autogenous GTA welds.

5Lim

19 wt. ppm B

10

50 pm

36 wt. ppm B

50 pm

96 wt. ppm B

tl

10 pm

Etchant: 10% KOH electrolytic



CW Laser Weld: 340 wt.ppm B
• Extensive HAZ liquation cracking in highest B condition

• Weld metal solidification cracks also observed
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Liquated grain boundary
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Etchant: 10% KOH electrolytic
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CW Laser Weld: 340 wt.ppm B: Electron Microscopy

• High-resolution backscatter electron imaging reveals fine-scale microconstituent decorating
liquated HAZ austenite grain boundaries
• Eutectic structure considerably finer in LBW vs. GTA welds exhibiting liquation

Fusion boundary \

20 prn
ENT= 15 00 kV WD = 7.5 nim Signal A= BSD Width = 150.0 pm

pm
ENT= 15 00 kV WO = 7.5 nim Signal A= BSD Width 10.00
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