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Simulating Damage Induced by Excavation/Heat Release
(LLNL Deep borehole damage and breakout modeling): Improved understanding of

Zenifim (arkose) material response for more predictive simulations

• Micromechanical testing and analysis of material response in triaxial compression tests has identified
bulking (shear-enhanced compaction) as the primary dissipation mechanism in the arkose material.

• Numerical optimization methods were used to obtain parametrizations for our GEODYN material models
that accurately capture the poro-elastic, yielding, and post-failure response in the arkose material

Micromechanical testing of arkose
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Borehole breakout simulations used to assess effects of uncertainty in
material properties.

• Simulations of damage in wellbore excavation used to
study effect on stability of uncertainty in the material
model properties that are unconstrained by available
experimental data.

• Uncertainties remain, but analysis predicts the Zenefim
(arkose) formation to be more stable during excavation
than the crystalline (granite) basement, despite the
nominally higher strength in the granite material.
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Analysis of complex damage mechanisms in borehole excavation.

• Analysis of fracture-borehole interactions showed
instability can arise even when the borehole and fracture
are independently stable under a given stress state.

• 3-D simulations of an evolving wellbore geometry
showed a history effect during excavation that is not
captured by static simulations of a 2-D or 3-D borehole.
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Generally, we find that common simplifying assumptions in wellbore stability analysis are non-conservative and
more sophisticated methods should be used.



Time Dependent Behavior in
Zenafim fm.

• 2 Successful creep tests
• Captured 3 phases of creep

• Time to failure depends on conf pressure,
applied load
• SC-4: 2129659 sec

• SC-7: 40539 sec

• Acoustic Emissions
• Majority of AEs near failure

• Located events around fracture growth in samples

• Working with Eyal to model localization, time
dependence

• Time dependent behavior important for
predicting Mt. Scopus behavior
• Chalks, oil shales show time dependent behavior

• In situ, engineered conditions could have
temperature, partial saturation to increase creep
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Low Mean Stress Failure
• Stress state likely present around wellbores

• Failure at low mean stresses not well described
by conventional criterion
• Transition between extensional and shear fracture

• Characteristic strengths, fracture angle, and
morphologies in stress state

• Sandia has developed test method and data
analysis for low mean stress conditions 200

102mm

88mm radius

30mm

47mm

■

Orthogonal Strain Gages
Latex Jacket
Plasticene Modeling Clay
Polyolefin Jacket

Wire
Piston
Oring

Choens 2015

• Carrara M
o Ramsey & Chester 2004

150

ca
a.
2

100
ca

50

1:3 •

❑

Increasing

Pc

Shear

0 ,
-15 -10

■
❑

❑
❑ •

Tensile

Sigma 3 (MPa)

5 10 15

CO3 - 10 MPa C01 - 50 MPa CO2 - 90 MPa C04 - 120 MPa C05 - 150 MPa



Lab studies of borehole breakouts

• Investigate bedding effects upon
borehole breakout

• 3 sample orientations: parallel,
perpendicular, and 45° to bedding

• Clear variations in borehole strength,
mechanism

Laminations

250 pm

• Completing initiated work on
Zenafim fm using model to predict
stability

• Good approach for Mt. Scopus
formation

• Investigate behavior with time,
temperature



Thermal,Hydrological, and Mechanical (THM) Modelling

• The safety assessment of a repository for nuclear waste requires the
demonstration of the integrity of the geological and geotechnical
barriers.

• Thermal, hydraulic, and mechanical processes need to be considered
• These processes interact and influence each other in a complex manner.



The thermal, mechanical and hydrologic properties of chalk are
complex and are stress, temperature, time and chemically dependent

In Situ Conditions + Engineered Conditions

• Consider Figure g29, depth range 170-320m, 558-1050ft

• In situ Stress: Gv = pgh, 3.9-7.2MPa 560-1050psi

011,H = f(Gv) 1/3 tO 1 x ay?

• In situ temperature= Ambient?

• Borehole induced stresses TBD

• Thermal loading induced stresses TBD

• In situ hydrology modifications TBD



Ghareb Chalk
Properties from the Shefela 80-100 km north of NRCN:

Permeability — 0.001 — 1 mD

Porosity 37%

Poisson's ratio — 0.37

Young's modulus — 7.8 GPa
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At elevated temperatures > 270°C rock properties change

significantly due to decomposition of the organic matter
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Chalk response to THM conditions
is complex
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FIGURE 3 I Axial creep strain curve with time for 130and 92.0
temperatures, and 0.5, 3.5, and 12.3MPa effective stresses. In addition,
a failed test performed at 12.3 and 92.0 is included to display the repeatability
of creep experiments.
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Figure 16. (a) Permeability as a function of volumetric strain 1 at start,
2 at 142 days, 3 at 400 days, and 4 at 1072 days. The permeability is
reduced from 1 to 2 as the core compacts. This shifts from 2 to 4 in
which the permeability increases despite the core compacts (and
dissolves). (b) Measured permeability as a function of estimated
porosity throughout the experiment. The numerals 1-5 represent the
start, 35 days, 142 days, 550 days, and 1072 days. The permeability
and porosity are reduced froml to 3, while the permeability increases
and stabilizes as the porosity increases from 3 to 5. (c) Measured
volumetric strairRiprglynttosionsitwipmate.
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  Johnston, 1987

Fto. 13. Changes in P-wave velocity as a function of temper-
ature at an effective pressure of about 70 bars. Initial velocities
are 3.700 km/s for sample 1, 3.156 km/s for sample 2, and
2.422 km/s for sample 3.
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Transition to intermediate-depth borehole presents new technical challenges

• GSI, SNL, LLNL: Develop an analysis and lab program based on

In Situ Conditions + Engineered Conditions

Prioritize effort implementation

• Support test hole design

• Potential areas for research focus moving forward:

• Simulation of thermal effects and offgassing on borehole stability and damage.

• Thermal driven multi-phase flow through natural fractures and casing interfaces.

• Micromechanical modeling and experimental investigation of permeability
changes with thermal effects

• Coupled fracture flow and geochemistry analysis

Work at LLNL will benefit from ongoing efforts under out exascale computing
program to develop a capability for field-scale borehole fracture/flow simulations
with ultra-high resolution of the fracture process zone.


