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Simulating Damage Induced by Excavation/Heat Release
(LLNL Deep borehole damage and breakout modeling): Improved understanding of
Zenifim (arkose) material response for more predictive simulations

* Micromechanical testing and analysis of material response in triaxial compression tests has identified
bulking (shear-enhanced compaction) as the primary dissipation mechanism in the arkose material.

* Numerical optimization methods were used to obtain parametrizations for our GEODYN material models
that accurately capture the poro-elastic, yielding, and post-failure response in the arkose material

Micromechanical testing of arkose

Material model validation:
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Borehole breakout simulations used to assess effects of uncertainty in

material properties.

e Simulations of damage in wellbore excavation used to
study effect on stability of uncertainty in the material
model properties that are unconstrained by available
experimental data.

* Uncertainties remain, but analysis predicts the Zenefim
(arkose) formation to be more stable during excavation
than the crystalline (granite) basement, despite the
nominally higher strength in the granite material.

Stress states in breakout and in experimental data

Borehole breakout simulations:
Granite Arkose (g)
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Analysis of complex damage mechanisms in borehole excavation.

e Analysis of fracture-borehole interactions showed

instability can arise even when the borehole and fracture 3-D Well-bore fracture interactions
are independently stable under a given stress state. ‘;’ulking e
i T | |
3 . 3 Porosity -

e 3-D simulations of an evolving wellbore geometry 'm |
showed a history effect during excavation that is not oo
captured by static simulations of a 2-D or 3-D borehole. . |

.—o.oom (c)
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H|story effect of evolving wellbore geometry on damage

Generally, we find that common simplifying assumptions in wellbore stability analysis are non-conservative and

more sophisticated methods should be used.



Time Dependent Behavior in

/enafim fm.

2 Successful creep tests
e Captured 3 phases of creep

Time to failure depends on conf pressure,
applied load

e SC-4: 2129659 sec
* SC-7:40539 sec

Acoustic Emissions
* Majority of AEs near failure
* Located events around fracture growth in samples

Working with Eyal to model localization, time
dependence

Time dependent behavior important for
predicting Mt. Scopus behavior
* Chalks, oil shales show time dependent behavior

* In situ, engineered conditions could have
temperature, partial saturation to increase creep

Differential Stress (MPa)
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Low Mean Stress Failure
e Stress state likely present around wellbores

e Failure at low mean stresses not well described
by conventional criterion

* Transition between extensional and shear fracture oo oo
lasticene eling Clay
* Characteristic strengths, fracture angle, and e s
morphologies in stress state

* Sandia has developed test method and data Choens 2015

analysis for low mean stress conditions
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Laminations

Mancos Shale

250 MM

 Completing initiated work on

® Imuestigate BEading ehiects Upon Zenafim fm using model to predict

borehole breakout

3 le orientati el stability

* 3 sample orientations: parallel, .

perpendicular, and 45° to bedding SOOd a-pproach for Mt. Scopus
ormation

e Clear variations in borehole strength,

: * Investigate behavior with time,
mechanism

temperature




Thermal,Hydrological, and Mechanical (THM) Modelling

The safety assessment of a repository for nuclear waste requires the
demonstration of the integrity of the geological and geotechnical
barriers.

Thermal, hydraulic, and mechanical processes need to be considered
These processes interact and influence each other in a complex manner.



The thermal, mechanical and hydrologic properties of chalk are
complex and are stress, temperature, time and chemically dependent

In Situ Conditions + Engineered Conditions

e Consider Figure g29, depth range 170-320m, 558-1050ft
* In situ Stress: 6, =pgh, 3.9-7.2MPa 560-1050psi
o,y =flo,) 1/3tolxo,?

* In situ temperature= Ambient?

* Borehole induced stresses TBD
* Thermal loading induced stresses TBD
* In situ hydrology modifications TBD



Ghareb Chalk

Properties from the Shefela 80-100 km north of NRCN:
Permeability —0.001 -1 mD

Porosity 37%
Poisson’s ratio — 0.37
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At elevated temperatures > 270°C rock properties change
significantly due to decomposition of the organic matter
Shitritet al., 2017




Chalk response to THM conditions

is complex
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FIGURE 3 | Axial creep strain curve with time for 130and 92-C

temperatures, and 0.5, 3.5, and 12.3MPa effective stresses. In addition,
a failed test performed at 12.3 and 92-C is included to display the repeatability

of creep experiments.
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Figure 16. (a) Permeability as a function of volumetric strain 1 at start,
2 at 142 days, 3 at 400 days, and 4 at 1072 days. The permeability is
reduced from 1 to 2 as the core compacts. This shifts from 2 to 4 in
which the permeability increases despite the core compacts (and
dissolves). (b) Measured permeability as a function of estimated
porosity throughout the experiment. The numerals 1-5 represent the
start, 35 days, 142 days, 550 days, and 1072 days. The permeability
and porosity are reduced from1 to 3, while the permeability increases
and stabilizes as the porosity increases from 3 to 5. (c) Measured

volumetric strairNgﬁﬁxofgﬁ%t{ogllagﬂsi%gﬁymate.
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Transition to intermediate-depth borehole presents new technical challenges

 GSI, SNL, LLNL: Develop an analysis and lab program based on
In Situ Conditions + Engineered Conditions
Prioritize effort implementation

e Support test hole design

 Potential areas for research focus moving forward:
* Simulation of thermal effects and offgassing on borehole stability and damage.
 Thermal driven multi-phase flow through natural fractures and casing interfaces.

 Micromechanical modeling and experimental investigation of permeability
changes with thermal effects

* Coupled fracture flow and geochemistry analysis

Work at LLNL will benefit from ongoing efforts under out exascale computing
program to develop a capability for field-scale borehole fracture/flow simulations
with ultra-high resolution of the fracture process zone.



