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Motivation and Strategy
+ The aim of this study is to increase the ability of C. glutamicum to utilize all major carbon sources

present in different biomass sources such as lignocellulosics and algal biomass.
❖ D-lactate is a precursor for poly-D-lactic acid (PDLA), a bio-based polymer, is a renewable

packaging material for fresh fruit containers, drinking cups, lamination films, and other items.
+ Recombinant strains of Corynebacterium glutamicum were generated after knocking out the L-lactate

production pathway and overexpression of ldhA -Lactobacillus delbrueckii, gldA101 - Bacillus
coagulans, and codon optimized gldA101* and designated AV46, SSL01, and SSL02, respectively,
for the production of D-lactate.

+ The D-lactate producing strains were grown with glucose and different aromatics such as benzoic
acid, cinnamic acid, vanillic acid, and coumaric acid directly.

❖ Xylose and arabinose uptake pathways were introduced to increase the ability of these strains to
utilize xylose and arabinose.

❖ U-13C fingerprinting study carried out by supplementing different aromatics and U-13C glucose to
the cells exhibited significant assimilation of aromatics especially in case of coumaric acid and
cinnamic acid.

+ Fed-batch fermentation gave high D-lactate titer and productivity of 14.41 g/L and 0.075 g/L/h,
respectively.
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Effect of xylose and arabinose on D-lactate production 
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D-lactic acid production from Glucose
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D-lactic acid production from DMR hydrolysate
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Conclusions & Si nificance

➢ Demonstrated the conversion of diverse biomass
substrate to D-lactate, a bioplastic precursor of PDLA,
in an industrial bacteria C. glutamicum.

➢ Effective utilization of coumaric acid demonstrated by
U-13C fingerprinting demonstrates promising
perspectives for lignin utilization

➢ Production of D-lactate from hydrolysate in C.
glutamicum opens the possibility of production of
other chemicals.

Ongoing R&D
Development of recombinant C. glutamicum for
proteneaous algae biomass
Co-culture of carbohydrate and protein utilizing strains
for algae hydrolysate valorization

This research was conducted as part of the Co-Optirnization of Fuels & Engines (Co-Optima)
project sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and
Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices.
Sandia National Laboratories is a multi-mission laboratory managed and operated by Co-Optimization of BioEnergy

National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-NA0003525.

Fuels & Engines Technology Office

U.S. DEPARTMENT OF ///A V,114

ENERGY National Nuclear Security Administration

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-13609C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.


