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Introduction
• Bayesian model calibration (BMC) refers to 385 —

coupling of limited experimental data with
an expensive computer simulator[1].
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Computer simulator takes a high
dimensional set of inputs known as
calibration parameters.

• Modeling the discrepancy function directly

leads to overfitting and unidentifiability[2].

• Goal: Use Bayesian inference to learn the
posterior distribution of the physical

parameters.

Regulariz ation
The addition of meaningful constraints in

order to reduce overfitting.

• Example: Computer simulator takes 6
inputs, 3 of which vary across experiments.

Some inputs represent measurement
uncertainties, with known mean µ and
variance V.

Overfitting can be identifieci with the
probability of prior coherency and can be
reduced or diagnosed via moment
penalizationpl.
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• Moment penalization leads to a shift in the
posterior distribution of the physical
parameters.

More consistent with the physicists prior
beliefs.

Modularization
Sometimes physical parameters a and
nuisance parameters Y are inherently jointly
unidentifiable.
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Modularization improves identifiability by
forfeiting the ability to learn about nuisance
parameters, while rigorously accounting for
the associated uncertainty[4].
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The Modularization posterior is efficiently
approximated numerically using the
Sequential Gaussian Process (SGP)
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