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2 ‘ Physical Unclonable Functions (PUFs) for Hardware Security

To protect against counterfeiters, tag each device or object with a unique fingerprint

Requirements:
o Easy to make, hard to reproduce

> Random and unique (difficult to predict)
o Efficient to characterize, reproducible output
> Low-cost, resilient
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Examples:

> Fibers in paper

o Manufacturing variations in electronics

° Ferromagnetic particles J_
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T. Bauer and J. Hamlet, IEEE Security & Privacy 12 6 97-101 (2014) Arbiter PUF with switchable delay lines and Anti-counterfeitting fibers in a banknote
T. McGrath et al., Appl. Phys. Rev. 6 011303 (2019) D-type flip-flop
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3 I Micromagnet PUFs

10,000 Ni magnetic needles on Si
4xT um size with 10 pm spacing

Encode a unique fingerprint with random ferromagnetic states I:I |:| I:I
° Individual magnetic states are hard to control but easy to randomize
> Two allowable magnetic states (along y axis); convert to {0,1} bit string
o Resistant to temperature and external B fields |:| I:I |:|

Drawbacks: ;
> Needs high-resolution magnetic imaging to measure each magnetic state N

o Reading out the micromagnet states with a scanning-tip magnetometer
can be time-consuming

Solution:

o Optical magnetic state readout with a widefield NV magnetic microscopy
setup

1 mm



4 1 NV diamond overview m = +1 :9',
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Discrete electronic states

o Magnetically-sensitive ground state

> Optical initialization & readout -0 m =0 Q

> Sublevel-dependent fluorescence Fine Zeeman

o DC to GHz magnetometry

Synthetic diamond chips (few mm) NV fluorescence under illumination
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s | NVs are good for high-res magnetic imaging

Advantages:
o Small sensor-target separation

High magnetic moment sensitivity (~ 1€-15J/Tin1s)
Few-mm FOV, micron spatial resolution

Overlay optical and magnetic images

Parallel acquisition (no sensor scanning)

Works at ambient conditions
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Example applications:
o Condensed-matter physics

° Biomagnetism objective
° Paleomagnetism

Diamond (without NVs)
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Magnetic sources

E. V. Levine et al., Nanophotonics doi:10.1515/nanoph-2019-0209 (2019)
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NV magnetic map of

¢ | Fabrication, measurement, and analysis 10,000 micromagnets @)
(1x1 mm area) B (gauss) I
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Measurement details e Py
> 20 minute acquisition, 1 um/pixel, 4x4 mm | e 4 '
diamond chip with a 4 um NV layer T
. ] ! 10.05
Analysis
o Orient array to be square, horizontal line i §
cuts, peak detection -0
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;7 | Detailed characterization

Micromagnet ferromagnetism / coercivity

o Despite measuring in a £1.5 mT bias field, the
micromagnet states are unaffected

Randomness

o In first attempt, micromagnet bit string passes all
NIST randomness tests (except one)

Standoff distance and minimum spacing
o ~2 um best-case standoff distance

° 5-6 um micromagnet spacing should be possible

Sensitivity and SNR

o Roughly 20 uT field strength and 5 uT noise floor
after1s

NIST SP 800-22 (2010)
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Example 1x0.25 pm micromagnet
1.8 ym standoff, 6.3E-15 J/T moment, 1 um/pixel
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s I Next steps

Further optimize fabrication and measurement parameters
> Controls: micromagnet dimensions & spacing, NV layer thickness

o Tradeoffs: standoff distance, magnetic field strength, magnetic moment, magnetic sensitivity

Wipe a micromagnet array to reset all the states
o Thermal demag, alternating field demag

Verify resilience to heating, external fields, and aging




9 I Outlook & Acknowledgements

Micromagnet arrays are useful as PUFs
> NV magnetic microscopy enables parallel wide-field readout

> SNR is sufficiently good for readout in minutes
o Further validation and optimization are ongoing
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