
The Structural Simulation Toolkit
1/4g

PRESENTED BY

The SST and GPGPU-Sim Teams (Sandia, Purdue)

I ISWC 2019 TUTORIAL

Sandia National Laboratories is a multirnission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-13495C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 Welcome!

Part I: Introduction to F' 8:45 - I 0: I 5
SST Overview

Demos: Running a simple simulation; Enabling statistics; Running in parallel

SST Element Libraries:A tour

Break 10:15 - 10:45
SST Element Libraries:A tour

Demos: L2 Cache; Backing store;Adding processors;Adding Memory; Node modeling

Lunch

Part 2: GPGPU-Sim
GPGPU-Sim Overview & New Features

Part 3:The SST/GPGPU-Sim Integration 2:30 - 3:00

Break 3:00 - 3:30

GPGPU-Sim Exercises 3:30 - 5:00

12:00 - 1:30

1:30 - 2:30

3 Instructors

Clay Hughes chughes@sandia.gov

Roland Green rgreen.dev@gmail.com

IISWC 2019 TUTORIAL

4 References

Websites
http://www.sst-simulator.org/
https://github.com/sstsimulator

Configuration File Format:
http://sst-simulator.org/SSTPages/SSTUserPythonFileFormat/

Doxygen Documentation:
http://sst-simulator.org/SSTDoxygen/9.0.0 docs/html/

Developer FAQ:
http://sst-simulator.org/SSTPages/SSTTopDocDeveloperInfo/

Building SST
http://sst-simulator.org/SSTPages/SSTBuildAndInstall9dotOdotOSeriesQuickStart/
http://sst-
simulator.org/SSTPages/SSTBuildAndInstall9dotOdotOSeriesDetailedBuildInstructions/

IISWC 2019 TUTORIAL

5 So many simulators, so little interoperability

Already a rich selection of open-source simulators

But not a solid ecosystem for modeling systems
Tightly-entangled components make modifications complex

E.g., assumptions about caching or address mapping pervasive

Most simulator integrations are ad-hoc, not lasting

Significant performance problems with tying many simulators together

Wants:
Enable "mix-and-match" of existing models to create custom systems

Encourage disentangled models with clean interfaces for swapping functionality

Bricks not buildings

Low effort, high performance parallel simulation

Continuous path from low-fidelity/fast modeling to high-fidelity/slow models

IISWC 2019 TUTORIAL

6 The Structural Simulation Toolkit
Goals

• Create a standard architectural simulation
framework for HPC*

• Ability to evaluate future systems on DOE/DOD

workloads
• Use supercomputers to design supercomputers

Technical Appr.dcl
Parplici Discrete Event core
• With conservative optimization over MPI/Threads

• InternnPrabilitu

• Node and system-scale models
• ivium-ScalF (
• Detailed (—cycle) and simple models that interoperate

• Ooer

• Open Core, non-viral, modular

Status
• Parallel framework (SST Core)
• Integrated libraries of components (Elements)

• Current Release (9.0)
https://sst-siriluldwi.org
https://gith u b/sstsim ulator

AL.. 4r# pa IA& I J e qf

111.41

IIISWC 2019 TUTORIA

Mellanor
Ta44.0a, Val.; 6.041:UmiC •

BOSTON
UNIVERSITY

NM

■

ro

UCF

•

'IDIA.

7 The SST Approach

Parallel Discrete-Event Simulator Framework (SST Core)
- Flexible framework enables multitude of custom "simulators"

O Demonstrated scaling to over 512 processors running a million+ components

Comes with many built-in simulation models (SST Elements)
Processors, memories, networks

Open API
O Easily extensible with new models
O Modular framework

O Open-source core

Time-scale independent core
Handles Micro-, Meso-, Macro-scale simulations

C++, Python

i
•

J L

i

IISWC 2019 TUTORIAL

8 SST Architecture

SST Cols(framework
The backbone of simulation

Provides utilities and interfaces for simulation components (models)

Clocks, event exchange, statistics and parameter management, parallelism support, etc.

0 SST tiement libraries
Libraries of components that perform the actual simulation

Elements include processors, memory, network, etc.

Includes many existing simulators: DRAMSim2, Spike, HMCSim, Ramulator, etc.

C
o
m
p
o
n
e
n
t

C
o
m
p
o
n
e
n
t

\
C
o
m
p
o
n
e
n
t

C
o
m
p
o
n
e
n
t

Integration Services

SST Core

MPI and C++ Threads

IISWC 2019 TUTORIAL

Running a simulation and code
orientation

.

High-Level View

IISWC 2019 TUTORIAL

Getting and Installing SST

http://www.sst-simulator.org
0 Current release source download

0 Detailed build instructions including dependencies for Linux & Mac

- Archived tutorial materials

o https://github.com/sstsimulator
Source code checkout

Master branch — has passed testing

1
Devel branch — has passed basic testing 0 Pull requests Issues Marketplace Explore 41

•
+

I

isf The Structural Simulation Toolkit
Using the supercomputers of today to build the supercomputers of tomorrow

*TRH Structural Simulation Toolkit
Str.actdrai Sirnuiation Paraiie DISCre:e E vent FrameNork and Architectural Simulation Components

httP://sst-simulatoronv

ReposAories 20 t People 37 - Teams 9 I i Projects 0 Settings

Pinned repositories Custorwe prvned mix

I Downloads ' Documentation Support sst-elernents ast-cors = sst-macro

Home
Home

SST Arcnaecttrai Srr,labon Canonneits and SST Structural Sins.dation TcolIct Parallel Disuete SST Macto Element L.brary

Libraries Event Core and Services

Downloads Introduction to SST •C-- *21 ý28 •c.. *21 1/15 • C.- tltc ‘i?

Documentation

1 1 Building Blocks

SST simulations are comprised of component! connected by links
0 Every link has a minimum (non-zero) latency

0 Components define r‘,. , which are valid connection points for a link

Components communicate by sending eventr over the links I

Components can use suuconiponents and mooule: for customizable functionality

Component Component ComponentLink Link
Core Latency: lns Cache Latency: 2ns NoC Router

r Event
Load

Component
Core

Link

NLatency: lns

Event
Data

n

Component
Cache(Linkatency: 2ns

Element Library,
„c c' A collection of components,..z, ,Q,

subcomponents, and/or modules

Component
NoC Router

1

IISWC 2019 TUTORIAL

12 I SST Code Structure

0 SST Core and SS i Element! are compiled separately
O Element libraries register with the core

O External elements (not part of SST Elements) can also be registered with the
Example at github.com/sstsimulator/sst-external-element

Core maintains a database of registered libraries
Can query database with sst-infi, utility

Source code for core:
O sst-core/src/sst/core/

Source code for elements
O sst 'alements/src /sst/elements/

Most elements have a tests/ directory
Often a good starting point for example configurations

IISWC 2019 TUTORIAL

core

Integration Services

.r

MPI and C++ Threads

13 Simulating with SST

We'll walk through how to configure a simulation and then run it
- Available at: https://github.com/sstsimulator/sst-tutorials/tree/master/pact20 I 9

O (github 4 sstsimulator 4 sst-tutorials 4 pact2019)

Element libraries in our example simulation
O Miran& - Simple core model that runs generated instruction streams

c Generators produce memory access patterns (SubComponents)

O memHierarcny — Various cache/memory system related subcomponents and modules

Cache (Component) with coherence protocol SubComponent
Memory Controller (Component) that loads a memory timing model (SubComponent)

2.4GHz, issue 2 accesses/cycle
Stream triad generator
- Three 1K element arrays A,B,C
- Compute C[i] = A[i] + 2*B[i]
4 2K reads Et 1K writes

 > L1 Cache < >L___ MemCtrl

2KB, 4-way set associative
2.4GHz, 2 cycle access
64B cache lines
LRU replacement
MESI coherence protocol

5Ons constant access latency
1GB capacity

IISWC 2019 TUTORIAL

14 I Configuration File: Global SST parameters

Set any global simulation parameters

sst_setProgramoptior("stopAtcycle", "100ms")

End simulation at 100ms if it hasn't ended already

Other options
Most are also available as command line arguments to SST

debug-file

heartbeat-period

timebase

l partitioner

1 output-partition

Definition

SST Python API
User-defined string
SST argument

File to print debug output to

If set, SST will print a heartbeat message at the specified period

Units of simulation. Default is picoseconds which enables 2/3 of a year.

Partitioner to use for parallel execution

File to print partition to

IISWC 2019 TUTORIAL

1 5 I Configuration File: Declare components and links

0 Components: sst . Component ("name", "type")

core = sst.Component("core", "miranda.BaseCPU")
cache = sst.Component("L1", "memHierarchy.Cache")

mctrl = sst.Component("memctr1", "memHierarchy.MemController")

Component name

0 Links: sst . Link("name")

link0 = sst.Link("core_to_cache")
linkl = sst.Link("cache_to_memory")

Link name

Component library.type

SST Python API
User-defined string
SST argument

Core

I

Cache

E

MemCtrl

IISWC 2019 TUTORIAL

16 I Configuration File: Configure the components

0 Parameters: addParams({ "parameter" : "value",

core.addParams({ "clock" : "2.4GHz" })

- SubComponents setSubComponent("slotname","type")
Recall: SubComponent is a swappable piece of functionality

gen = core.setSubComponent("generator", "miranda.STREAMBenchGenerator")

memory = mctrl.setSubComponent("backend", "memHierarchy.simpleMem") 1

How do I know what the options are?
Or even what elements I can pick from?

SST Python API
User-defined string
SST argument

Cache

Í

IISWC 2019 TUTORIAL

17 I SSTlnfo. Getting component info

sst-info: utility to query element libraries

$ sst-info miranda.BaseCPU
Optionally filter for a specific library and/or component

PROCESSED 1 .so (SST ELEMENT) FILES FOUND IN DIRECTORY(s) /home/sst/build/sst-elements/lib/...

Filtering output on Element = "miranda.BaseCPU"

ELEMENT 0 = miranda

Num Components = 1

Component 0: BaseCPU

CATEGORY: PROCESSOR COMPONENT

NUM STATISTICS = 17

Port name

NUM PARAMETERS = 12

PARAMETER 0 = clock (Clock for the base CPU) [2G1-1z]

NUM PORTS = 2

PORT 0 = cache link (Link to Memory Controller)

Definition

NUM SUBCOMPONENT SLOTS = 2
Definition

SUB COMPONENT SLOT 0 = generator (What address generator to load) [SST::Miranda::RequestGenerator]

'\NN Slot name

SubComponent API

Parameter N Definition
"REQUIRED" or
default value

IISWC 2019 TUTORIAL

18 I Configuration File: Connecting the components

- Declared Iinks and components a couple slides ago...

link0 = sst.Link("core_to_cache")
linkl = sst.Link("cache_to_memory")

core = _
cache = •••
mctrl = _ 4Gen)

_.onnect components: connect (endpointl, endpoint2) Core

Where endpoint is: (component, port, latency)

link0.connect(
(core, "cache_link", "100ps");------
(cache, "high network 0", "100ps")

link1.connect(
(cache, "low_network_0", "100ps")
(mctrl, "direct_link", "100ps") S

Endpoint 1

)

Endpoint 2

1

Cache

11

r MemCtrl

IISWC 2019 TUTORIAL

19 Running SST

Usage: sst [options] configFile.py

Common options:

-v I --verbose

--debug-file <filename>

--partitioner <zoltan 1 self I simple 1
rrobin I linear 1 lib.partitioner.name>

-n 1 --num threads <num>

--model-options "<args>"

--output-partition <filename>

--output-dot <filename>
--output-xml <filename>
--output-json <filename>

Print information about core runtime

Send debugging output to specified file (default: sst_output)

Specify the partitioning mechanism for parallel runs

Specify number of threads per rank

Command line arguments to send to the Python configuration file

Write partitioning information to <filename>

Output the configuration graph in various formats to <filename>

IISWC 2019 TUTORIAL

20 Running a simulation

Launch simulation

$ sst demo_1.py

Output

[Simulation is complete, simulated time: 6.66491 us

We probably want more information about what happened though
Enable statistics!

IISWC 2019 TUTORIAL

21 I Enabling statistics

- Most Components and SubComponents define statistics
$ sst-info memHierarchy.Cache

•••

NUM STATISTICS = 51

STATISTIC 0 = CacheHits [Total number of cache hits] (count) Enable Level = 1

STATISTIC 1 = latency_GetS_hit [Latency for read hits] (cycles) Enable level = 1

Enable statistics in the configuration file
enableAllStatisticsForAllComponents()

enableAllStatisticsForComponentType(type)

enableAllStatisticsForComponentName(name)

setStatisticLoadLevel(level)

enableStatisticForComponentName(name, stat)

enableStatisticForComponentType(type, stat)

Configure output
setstatisticoutput("sst.output_type")

setstatisticoutputoptions(roption" : "value", })

IISWC 2019 TUTORIAL

22 Running with statistics enabled

Let's enable statistics for all components
- Caches have A LOT of statistics so send the output to a CSV file

0 Other options: sst.statoutputX where X=

console txt
json hdf5

sst.setStatisticOutput("sst.statoutputcsv")

sst.setStatisticOutputOptions({ "filepath" "stats.csv" })

sst.setStatisticLoadLevel(5)

sst.enableAllStatisticsForAllComponents()

IISWC 2019 TUTORIAL

23 Running a Simulation —Add Statistics

Copy configuration

$ cp demo_1.py demo_2.py

Add statistics to new configuration

Launch simulation
[$ sst demo_2.py

Take a minute to look at the statistics
Can you calculate the LI memory bandwidth?

IISWC 2019 TUTORIAL

24 SST in parallel

SST was designed from the ground up to enable
scalable, parallel simulations

Components distributed among MPI ranks/threads
Link latency controls synchronization rate

Two ranks
$ mpirun -np 2 sst demol.py

Two threads
$ sst -n 2 demol.py

Two ranks with two threads each
This will give a warning since we only
have 3 components across 4 ranks/threads
$ mpirun -np 2 sst -n 2 demol.py

CompO

Compl

MPI Rank 0

Comp2

t

Comp3

4-->

<-->

Comp4

t

Comp5

+4

<-4

Comp6

t

Comp7

Same con iguration file

IISWC 2019 TUTORIAL

SST Elements:A Tour

IISWC 2019 TUTORIAL

26 SST Element Libraries

O Elements are libraries of related components

c Elements must be registered with the SST core
Tells SST where to find this set of components

Includes information on parameters and statistics for each component

O SST provides a set of element libraries

Processor, network, memory, etc.
Tested for interoperability within and across libraries
Many are compatible with external "components" such as Ramulator and Spike
See www.sst-simulator.org for more information

O You can also register your own elements

IISWC 2019 TUTORIAL

27 SST 9.0 Elements

Processors

Ariel — PIN-based

Juno — simple ISA processor

Miranda — pattern generator

Prospero — trace execution

GeNSA — Spiking temporal processing unit

Memory Subsystem

cacheTracer — cache tracing

O Cassini — cache prefetchers

O CramSim — DDR, HBM

O MemHierarchy — caches, directory, memory

Messier - NVM

Samba —TLB

VaultSimC — vaulted stacked memory

Network drivers

Ember — communication patterns

Firefly — communication protocols

O Hermes — MPI-like driver interface

O Zodiac — trace based driver

Thornhill — memory models for Ember sims

Networks/NoCs

Merlin — flexible network modeling

Kingsley — mesh NoC

Shogun — crossbar NoC

Others

sst-macro — network drivers/network

scheduler — job scheduling

simpleSimulation —"car wash" example

O simpleElementExample — many examples

O sst-external-element — example element
IISWC 2019 TUTORIAL

28 I Juno: Simple instruction processor

Executes a program written in simple "assembly"
32-bit wide instructions with 8 bit op codes

64-bit integer operations

ADD, SUB, DIV, MUL,

AND, OR, XOR, NOT

Jump by register value (JGT-Zero, JLZ-Zero, J-Zero)

Jump up to16 bits in either direction from current PC

Up to 253 user registers

r0 = PC

r I = data start register

Memory

Juno
i-

Load/Store Unit
 }

Instruction Manager
 _J

Register File

Processor 1 Memory Network/NoC NetiMIPRTMer Other

29 I Ariel: PIN-based processor

Lightweight processor core model

Uses Intel's PIN tools and XED decoders
to analyze binaries

Runs x86, x86-64, SSE/AVX, etc. binaries

Supports fixed thread count parallelism
(OpenMP, Qthreads, etc.)

Passes instructions to virtual core in SST

GPGPU-Sim Integration

Ariel PINIT I

TIM .1 tonponerit

I bAribir Owe

ploemEibentUrg)

Processor Memory Network/NoC NetWeh9kulifNer utner

30 Ariel: Details

Pintool communicates with Ariel via shared memory !PC
Per-thread FIFO of instructions from pintool to Ariel's virtual cores

Backpressure on FIFO halts the binary's execution

Ariel's virtual cores
O Memory instruction oriented. execute memory instructions; other ins. single cycle no-ops
O Clocked. Reads instruction stream in chunks but processes on clock

Does not maintain dependence order or register locations

Can map virtual-to-physical addresses internally or use external component

Key parameters
O Ops issued/cycle
O Load/store queue size

Uses SST simpleMem interface
Generates SimpleMemRequests

Compatible with memHierarchy

Processor 1 Memory Network/NoC NetWeh9kulifNer Other

31 Ariel: The Tradeoff

Pros:

- Faster than more complex/pipeline models

O Reasonable approximation for studies on memory system performance

Especially for heavily memory-bound applications

Reasonable model of thread interactions

Cons
Non-deterministic results

Interactions between pintool, threads, etc.

Variation is low (0(1%))

O Not compatible with non-x86 binaries

O Reliant on Pin 2.14

Currently working towards enabling Ariel to be used with other drivers

Processor 1 Memory Network/NoC NetWeifkuliffbe

32 Prospero: Trace-based processor

Trace-based processor model
Like Ariel, memory instruction oriented

Reads memory ops from a file and passes to the simulated memory system

"Single core" but can use multiple trace files to emulate threaded or MPI applications

Supports arbitrary length reads to account for variable vector widths

Performs "first touch" virtual to physical mapping

Comes with Prospero Trace Tool to generate traces
Or can generate your own and translate to Prospero's format

Processor Memory Network/NoC NetWeh9kulifNer Other

33 Prospero: The Tradeoff

Pros

Faster than Ariel*

Provided you can get a trace

Cons

Traces can be very large

Requires good I/0 system to store and read the trace

Traces are less flexible than actual execution

Capture a single execution stream using a single application input

Processor 1 Memory Network/NoC Network driver Other

34 Miranda: Pattern-based processor

Extremely light-weight processor model
Generates memory address patterns
Supports request dependencies

Library patterns
Strided accesses (single stream)
Forward and reverse strides

0 Random accesses
0 GUPS
STREAM benchmark
In-order & out-of-order CPU

3D stencil
Sparse matrix vector multiply (SpMV)
Copy (—array copy)
Stake interface to the Spike RiscV simulator

1
Processor 1 Memory Network/NoC NetWeh9kulifNer Other

35 Miranda: The tradeoffs

Pros
- Very lightweight — no binary, no trace

0 Good for applications whose address patterns are predictable

e.g., not much pointer-chasing

Models instruction dependences

Cons
Need a generator for the memory pattern of interest

Requires a good understanding of the pattern

Processor 1 Memory Network/NoC NetiMIPRTMer Other

36 MemHierarchy: Memory system

Collection of interoperable memory system elements
- Caches

0 Directories

0 Memory controllers

Interfaces to memory models (DDR, HBM, HMC, NVM, etc.)

Scratchpads

NoC (network-on-chip) interfaces

Buses

Components are cycle-accurate/cycle-level

Capable of modeling modern cache and memory subsystems

.
r Processor

\
Memory Network/NoC NetWeh9kulifNer Otl

37 MemHierarchy: Cache modeling

Highly configurable
- Arbitrary hierarchy depth, flexible topologies

0 Cache inclusivity, coherence, private/shared, etc. configurable

- Single- and multi-socket configurations

Prefetch via Cassini element library

Data movement
Components support direct, bus, and on-chip network (NoC) communication

Event types: read/write, atomics, LLSC, noncacheable, custom memory, etc.

1-

.
r Processor

-\

Memory Network/NoC NetWeh9P111119fer Other

38 MemHierarchy: Memory modeling

Interface to memory is the MemController

MemControllers implement backends
Timing model for memory controller with a link to memory

Timing model for memory controller and memory i
Interface to another component(s) that does the memory controller/memory timing

In this case just translates request formats

Wrapper for an external/non-native-SST component

Ramulator, DRAMSim2, etc.

Support custom memory instructions
Including ability to do cache shootdowns for coherence maintenance

.
r Processor

—\
Memory Network/NoC NetiMIPRTMer Otl

39 MemHierarchy: Memory modeling

Memory controller
- Manages data values if needed (backing store)

0 Facilitates custom memory commands

Including cache shootdowns for coherence maintenance

Passes events to memory backend subcomponent

0 Backend; the "real" memory controller and/or memory
Implementations

Memory controller and model itself

Memory controller with interface to a memory component

Interface to another memory controller/memory component

Wrapper to an external simulator

Memory Controller

cusI— tom
command
handler

Backing
1 store

To memory
component (optional)

.
r Processor Memory Network/NoC NetiMIFINPftber Other

40 MemHierarchy: SST 9.0 backends

Memory (external)
CramSim (DDR, HBM)

• DRAMSini (DDR)

PagedMulti — 2-level memory variant

• FlashDlMMSim (FLASH)

• HMCSim/GoblinHM((HMC)

• HBMDRAMSim2 (HBM)

HBMPagedMulti — 2-level memory variant

Messier (NVRAM)

0 Rai (DDR, HBM, HMC)

SimpleDRAM (DDR)

SimpleMem (constant latency)

TimingDRAM (DDR)

VaultSimC (HMC-like)

Plus a few that can be used with other backends to reorder requests, add latency, etc.

r Processor Memory Network/NoC NetiMIPPIPtiver Other

41 Running a Simulation —Add Components, L2 Cache

Copy configuration

$ cp demo_2.py demo_3.py

Add an L2 cache between L I and memory to new configuration

What should you add?

What parameters are available for an L2 cache?

What are appropriate values for the parameters?

Launch simulation

[$ sst demo_3.py

0 How did this affect your overall simulated time?

0 How did this affect traffic to and from your backing store?

IISWC 2019 TUTORIAL

42 Running a Simulation — Switch Components,Timing DRAM

Copy configuration

$ cp demo_3.py demo_4.py

Switch the simpleMem subcomponent for timingDRAM

What should you change? Remember that sst-info is your pal! .j

Launch simulation
[$ sst demo_4.py

How do your results differ from the run with simpleMem?

IISWC 2019 TUTORIAL

43 Merlin: Network simulator

Low-level networking components that can be used to simulate high-speed networks
(machine level) or on-chip networks

Capabilities
High radix router model (hr_router)

Topologies — mesh, n-dim tori, fat-tree, dragonfly

Many ways to drive a network
Simple traffic generation models

Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

MemHierarchy

Lightweight network endpoint models (Ember — coming up next)

Or, make your own

Processor Memory Network/ NoC NetMlfku&fiber \I uu

44 Merlin: Organization

NIC

TrafficGen
TestNiC
User Logic

LC = LinkControl

Router

x
B
A
R

Topology

PC = PortControl

Í Processor T Memory Network/NoC NetWehluliffiver T Othe

45 Kingsley: Mesh simulator

Network-on-chip model; mesh
configuration

Similar to Merlin but:
No input queuing at routers

Mesh topology only

Not all ports need to be populated

Possible to instantiate multiple unconnected
n etwo rks

Multiple physical networks for coherence (e.g.,
request/response/ack/forward)

Kingsley NoC + Merlin/Kingsley system
network

\

r .d.
h Interconnect

Í Processor T Memory Network/NoC
r

Network driver T Other 1

46 Ember: Network Traffic Generator

Light-weight endpoint for modeling network traffic
Enables large-scale simulation of networks where detailed modeling of endpoints would be
expensive

Packages patterns as motifs
Can encode a high level of complexity in the patterns

Generic method for users to extend SST with additional communication patterns

Intended to be a driver for the Hermes, Firefly, and Merlin communication modeling
stack

Uses Hermes message API to create communications

Abstracted from low-level, allowing modular reuse of additional hardware models

Processor Memory Network/NoC

r M
Netwoxliuddyer ' Other 1

47 Ember: Overview

r
I I ..._ .L 1 r

Ember MOUT

Ember Engine

Hermes API

r
Firetly

Merlin Network

High Level Communication Pattern and Logic
Generates communication events

Event to Message Call, Motif Management
Handles the tracking of the motif

Message Passing Semantics
Collectives, Matching, etc.

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing, etc.

(-\

Processor Memory Network/NoC Netwoxkufirwer
r

Other 1

48 Ember: Motifs

Motifs are lightweight patterns of communication
- Tend to have very small state

O Extracted from parent applications

O Models as an MPI program (serial flow of control)

Many motifs acting in the simulation create the parallel behavior

Example motifs
O Halo exchanges (1 , 2, and 3D)
O MPI collections — reductions, all-reduce, gather, barrier

O Communication sweeping (Sweep3D, LU, etc.)

Processor Memory Network/Not Netwoxkufirwer

49 Ember: Motifs (continued)

The EmberEngine creates and manages the motif
Creates an event queue which the motif adds events to when probed

The Engine executes the queued events in order, converting them to message semantic calls
as needed

When the queue is empty, the motif is probed again for events

Events correspond to a specific action
E.g., send, recv, allreduce, compute-for-a-period, wait, etc.

Processor Memory Network/NoC

r M
Netwoxliuddyer ' Other 1

50 Firefly: Network traffic

0 Purpose: Create network traffic, based on application communication patterns, at large
scale

Enables testing the impact of network topologies and technologies on application
communication at very large scale

Scales to I million nodes

Supports multiple "cores" per Node
Interaction between cores limited to message passing

Supports space sharing of the network
Multiple "apps" running simultaneously

Processor Memory Network/NoC

r M
Netwoxliuddyer ' Other 1

51 Firefly: Simulating large networks

A network node consists of
- Driver (the "application")

0 NIC

0 Router

Nodes are connected together via routers to form a network
Fat tree, torus, etc.

Firefly is the interface between the driver and the router
Message passing library 4 Firefly Hades

NIC 4 Firefly NIC

Processor Memory Network/NoC

r M
Netwoxliuddyer ' Other 1

Ember
(driver)

Firefly Hades

Firefly NIC

1

Merlin Router

52 I Scheduler: Job scheduling

Models HPC system-wide job scheduling

0 Three components
O Sched: schedules and allocates resources for a stream of jobs

O Node runs scheduled jobs on their allocated resources

O FaultInjection, injects failures onto the resources

The scheduler can be a stand-alone element library
The schedComponent and nodeComponent must be used together

The faultlnjectionComponent is optional

Can be used with Ember/Firefly/Merlin stack
Examine topology aware scheduling and allocation

Processor Memory Network/NoC NetWeifkuliffbe Other

53 Other Libraries

More information on these and other element libraries and external components is
available on the wiki
0 www.sst-simulator.org

IISWC 2019 TUTORIAL

54 Viewing Configuration Graph

Let's take a look at how SST views our system

Re-run demo_4 but add a command to dump the configuration graph

[S, sst --output-dot=graph_demo_4.dot demo_4.py

This gives you a GraphViz formatted file

$ dot -Tpdf graph_demo_4.dot -o graph_demo_4.pdf
evince graph_demo_4.pdf

Is this how you expected your system to look?

With this in mind, let's add a second Miranda core...

core
miranda.BaseCPU

Port: cache_link

core_to_cache
100ps

11_cache

generator
memHierarchy.Cache

miranda.STREAMBenchGeneratol Port: high_network_O

Port: low_network_O

11_to_12
100ps

12_cache
memHierarchy.Cache

Port: high_network_O

Port: low_network_O

cache_to_memory
100ps

.......

memory
memHierarchy.MemController

Port: direct_link

backend
IISWC 2019 TUTORIAL memHierarchy.timingDRAM

55 Running a Simulation — Add Components, Second Miranda

Copy configuration

$ cp demo_4.py demo_5.py

Add an a second Miranda generator
What else might you need?

• How about another L1 cache?
• How are you going to wire everything

together? How about a bus?

Dump the wiring diagram to verify the model

Launch simulation

$ sst demo_5.py

r

miranda

L

Ehl

r --,

miranda

L 1

L2

IISWC 2019 TUTORIAL

56 Running a Simulation — Add Components, Second L2

Copy configuration

$ cp demo_5.py demo_6.py

Add L2 cache and move both above the bus

Launch simulation

ri sst demo_6.py

r
....._ -,

miranda

L _d

miranda

_d

IISWC 2019 TUTORIAL

57 Running a Simulation — Add Components, Second Memory

Copy configuration

$ cp demo_6.py demo_7.py

Add an a second L2 and memory controller
Think carefully about how addressing should will work...

Can you still use a bus?
Can the talk directly to the memory controller?

Launch simulation

$ sst demo_7.py

,

miranda miranda

..0

IISWC 2019 TUTORIAL

58 Running a Simulation — Add Components, Second Memory

Swap the bus component for the shogun component

sho un_xbar = sst.Compo
"shogun.ShogunxBar")
shogun_xbar.addParams({

"clock" : "LOGHz",
IIport_count" : 4,
"verbose" : 0

}

.u bar",
4M

Add directory controllers before the memory
ss . - .onent(tr(cach-_ . , "memHierarchy.DirectoryControllee)

dirctrl.addParams({
"coherence_protocor : "MESI",
"entry_cache_size" : "32768",
"addr_range_end" : endAddr,
"addr_range_start" : startAddr,
"interleave_size" : "256B",
"interleave_step" : str(numLLC * 256) + "B",

})
dc_cpulink = dirctrl.setSubComponent("cpulink", "memHierarchyMemNIC")
dc_memlink = dirctrl.setSubComponent("memlinle, "memHierarchyMemLink")
dc_cpulink.addParams({
"group" : 3,

})
dc_linkctrl = dc_cpulink.setSubComponent("linkcontror, "shogm.ShogunNIC")

,.._ miranda

/

r L2

r

miranda

L2

Memory

-

--

Getting help and extending SST

IISWC 2019 TUTORIAL

60 Extending SST

SST was designed for extensibility
Components/subcomponents can be added without touching SST Elements

Example: write a new prefetcher and have memH caches use it 4 no changes to memHierarchy

SST-Core APls are stable 4 one year deprecation period

Element APls may be less so but generally try to keep them consistent

Many users start with SST Elements and then build their own customized libraries

Partially or completely replacing SST Element functionality

Many approaches to using SST
Core only:Write your own components from scratch

Start from existing Elements and replace components/subcomponents to meet your needs

Wrap existing simulators and insert as components or subcomponents

IISWC 2019 TUTORIAL

61 Extending SST: Resources

Example element library
Components demonstrating links, ports, clocks, event handling, etc.

sst-elements/src/sst/elements/simpleElementExample/

simpleSimulation
Simulates a car wash (a little more complex than example elements)

Example external element library

- Demonstrates building and registering a new element library

0 https://github.com/sstsimulator/sst-external-element

Website
Getting Started Extending SST (a little out ofdate)

Building Element Libraries outside SST source tree

Past tutorial material (under Downloads)

sst-simulator.org/SSTwebsiteAPl documentation

IISWC 2019 TUTORIAL

62 Finally: Getting help

SST wiki contains lots of information (www.sst-simulator.org)
O Downloading, installing, and running SST
O Element libraries and external components

O Guides for extending SST

O Information on APIs

Information about current development efforts

Past tutorial slides and exercises

SST Github
Current development

Issues track user questions as well as development plans, bugs, etc.

IISWC 2019 TUTORIAL

63 I Part I wrap-up

0 SST is a parallel, flexible simulation framework
O Can simulate many systems at many granularities

O Capable of simulating modern architectures

O Modular design for extensibility

Please keep us posted on your uses of SST as well as any capabilities you've added or
would like to see added

The SST team wants to help you!
o Documentation?
o Examples?
o Kittens?

50LvE P116_015 cgEATE Fgems-15

TOOLS Ttik TcO15 THAI- TCOLS THAT NEED' TOOL5 0405E TIFNuAL
rwr mac) WED MANUAL BUT 5TPCT5 LEK 'HOW lb

MANDPL- MANUAL 9CINT HAVE ONE HEAD Mi5 MANIAC

IISWC 2019 TUTORIAL

GPGPU-Sim is next...

66 Demo 5 Wiring
core_O

miranda.BaseCPU

Port: cache_link

generator
miranda.STREAMBenchGenerator

cache 0
100ps

11_cache_O
memHierarchy.Cache

Port: high_network

Port: low_network

core_1
miranda.BaseCPU

Port: cache_link

core to cache_1
100ps

11 cache_1

ge memHierarchy.Cache

miranda.STREAMBenchGenerator Port: high network_O

1 to bus_O
100ps

bus
memHierarchy.Bus

Port: high_network 0

Port: high_network_1

Port: low_network 0

I1_.to bus_1
100ps

Port: low_network_O

bus to_12
100ps

12 cache
memHierarchy.Cache

Port: high_network

Port: low_network

cache to memory
100ps

........

memory
memHierarchy.MemController)

Port

•

backend
memHierarchy.timingDRAM

67

IISWC 2019 TUTORIAL

68 Running a Simulation — Add Components, Simple Node

Copy configuration

$ cp demo_6.py demo_7.py

Add the components to create a simple node
Each PE has a Miranda generator and an L I
The two memory nodes should use timingDRAM

How should you connect everything?

Launch simulation
$ sst demo_7.py

Miranda + L1

Miranda + L1

Miranda + L1

r ,

Miranda + L1

-T
Mem ory

Miranda + L1

1
Ililiranda + L1

1

,

,

Miranda + L1

.,,

IISWC 2019 TUTORIAL

69 ■

