
### Sandia National Laboratories: Energy Programs, Research and Development









#### PRESENTED BY

Peter H. Kobos, Ph.D.

Manager, Water Power Technologies Program



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

## **Energy Program Areas & Approach**



### **Energy Program Areas**

- Renewables
- Grid Energy Storage
- Fossil
- Nuclear
- Hydrogen
- Biofuels
- Transportation
- Analysis

### **Approach**

- De-risk low Technology Readiness
   Level (TRL) technologies
- Test & Verify Technologies (components, systems)
- Teaming with Technology Standards Institutions
- Partner with Industry
- Energy Security and Resilience

## Sandia's Energy Programs Have Grown from Our

**Core Capabilities** 

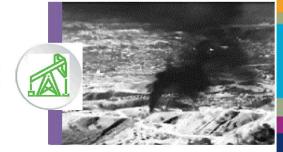


Safe Nuclea Waste Dis

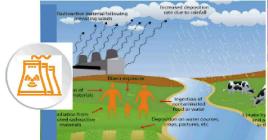


Solar Towe




Water
Distribution
Systems




Energy Sto Integration



Borehole Integrity



Off-Site quences of ladioactive mospheric e Modeling



Safety Analysis of MARS 2020

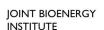


Advanced aterials for y Efficiency



### Sandia's Energy Program Dates to the 70'S

SCALED WIND FARM TECHNOLOGY (SWIFT) FACILITY COMMISSIONED




ENERGY CRISIS OF THE 1970S SPAWNED THE BEGINNING OF SIGNIFICANT ENERGY WORK

WASTE **ISOLATION** PILOT PLANT (WIPP) EVALUATION









CRUDE OIL **CHARACTERIZATION** RESEARCH STUDY

2010-2018



3-D PRINTING, ADDITIVE MANUFACTURING, AND PROCESSES TO CREATE MOLDS FOR WIND TURBINE BLADES.



**BORN A NUCLEAR** WEAPONS ENGINEERING LABORATORY WITH DEEP SCIENCE AND **ENGINEERING** COMPETENCIES



**STRATEGIC PETROLEUM** RESERVE



SYNTHETIC DIAMOND **DRILL BIT** 





1950s 1960s 1970s 1980s 1990s 2000-2010

**OUR CORE NW** COMPETENCIES **ENABLED US TO** TAKE ON ADDITIONAL LARGE NATIONAL **SECURITY CHALLENGES** 



**SOLAR TOWER OPENS** 



MELCOR COMPUTER CODE RELEASED



LAB FOR YUCCA MOUNTAIN



MICROSYSTEM-**ENABLED PHOTOVOLTAICS** 



200% IMPROVEMENT IN **ENERGY CAPTURE** FROM WECS THROUGH ADVANCED CONTROLS



LARGE-SCALE POOL FIRE TESTS OF LIQUEFIED NATURAL GAS (LNG) ON WATER



HIGH **TEMPERATURE** FALLING-**PARTICLE** SOLAR **RECEIVER** 



PV REGIONAL TEST **CENTERS ESTABLISHED** 



**BATTERY SAFETY & RELIABILITY PROGRAM** 







**IDENTIFIED AS LEAD** 


### Our Energy Facilities



National Solar

Thermal Test

Facility (NSTTF)



National Solar Thermal Test Facility (NSTTF) National Infrastructure Simulation & Analysis

Geomechanics

Lab





<sup>2</sup> The Arctic Radiation Measurement (ARM) Climate Research Facility supports climate modeling, search & rescue operations, and other national security work.

Research Facility

# Unique Large-Scale Renewable Energy Facilities: NSTTF, PSEL and SWIFT



## Our National Impact



#### **PDC Drill Bits**

Sandia contributed to the development of polycrystalline diamond compact (PDC) bits, one of the most important material advances for drilling tools in recent years. PDCs have allowed for the significant increase in shale oil production



#### **Improving WECs**

Sandia developed and integrated advanced controls algorithms for Wave Energy Converters (WEC): this increased experimental WEC output by 200-300%.



## Wind Turbine Blade Manufacturing

Sandia worked with TPI to reduce the time required to manufacture blades and reduce the scrap rate which made it economical to manufacture blades in the US.



## PV Systems Evaluation Lab (PSEL)

Researchers at PSEL have accelerated the adoption of new PV technologies by providing highly accurate, comprehensive performance characterization of cells, modules, arrays, and balance of system components in real world scenarios.



Every commercial CSP powertower plant in the world has used technologies developed and tested at the National Solar Thermal Test Facility (NSTTF)



#### Recent R&D 100 Awards

2017: Sandia's Microgrid Design Toolkit

**2016:** Falling Particle Receiver for Concentrated

Solar Energy

**2015:** New High Voltage Switch (SNL & United Silicon Carbide, Inc.)

2013: Solar Glare Analysis Tool (SGHAT)2012: Microsystems Enabled Photovoltaics

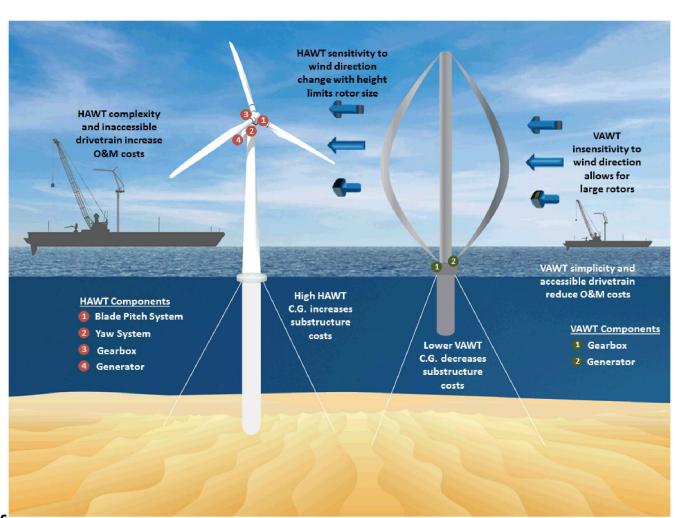
### Renewables: Floating Offshore Wind Energy



#### Floating offshore wind plants

More components than land-based machines

#### **Turbine costs**


 65% of wind plant costs for land-based sites compared to around 20% for floating offshore sites

#### **Platform costs**

largest single contributor to LCOE


#### **Vertical-axis wind turbines (VAWT)**

- Lower center of gravity, reducing platform costs
- Improved efficiency over HAWTs at multi-MW scales
- Reduced O&M costs via reduced active components, platform-level placement of drivetrain



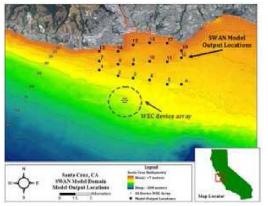
### Renewables: Water Power Technologies

Water Power Device Testing & Robotics: Advanced Dynamics & Controls testing w/DOD, DOE, others



MASK Wave Basin Tests:

Increased power absorption by 200%+



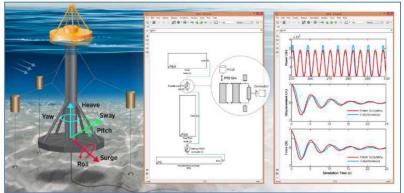

Power Take Off Design & Testing



Mobile Lab Capability:
Software & Hardware Device Co-Design & Testing
Demo Video: https://youtu.be/IQgPLUfttN8

#### **Deployment Support**




**Device Array** 

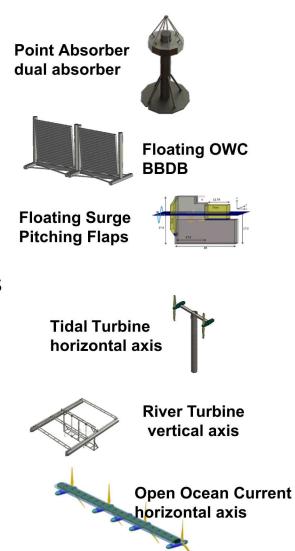
#### Materials Testing SNL, PNNL, NREL

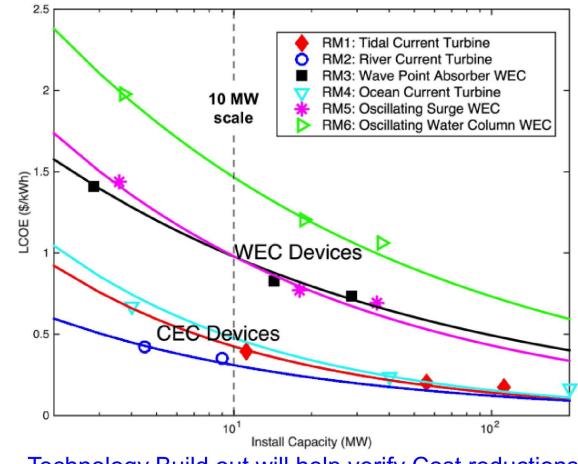




Design SNL & NREL Partnership




Lab & Field Testing


Software

### Renewables: Water Power Reference Model

10 MW Installed Capacity

- Wave Energy Converters (WECs)
  - ≈ \$0.98-1.53/kWh
  - At 10 MW structural mass is the largest contributor to LCOE.
- Current Energy Converters (CECs)
  - ≈ \$0.31-0.45/kWh
  - Varying resource conditions impact installation, permitting, capacity factors, etc.





Technology Build out will help verify Cost reductions

Source: Neary et al., 2014, 2016, 2017

### **Grid Energy Storage**

#### **Energy Storage Safety and Reliability**

- Cell and module level safety test and analysis.
- Engineered safety of large systems.
- Predictive models for ES safety.
- Storage safety standards and protocols.

#### **Power Electronics and Power Converters**

- Reduce cost/kW (PCS accounts for 20-60% of capital cost)
- Increase reliability (Downtime is \$\$)
- Increase efficiency (Loss is \$\$)
- Enhance control over power flow in ESS

#### **Energy Storage Analytics and Controls**

- Developing analytics and controls for integration of utility class storage systems.
- Software tools for optimal use of energy storage across the electricity infrastructure.
- Standards development.
- Engineering analysis for demo projects

#### **Energy Storage Demonstration Projects**



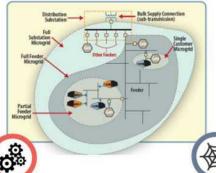
Open-source, Python-based Energy Storage Analysis Suite



### Sandia Grid Modernization

Distributed Energy Technology Laboratory (DETL) opens




Electricity Delivery & Energy Reliability

DOE/OE Established

National SCADA Test Bed (NSTB) established



**Energy Surety Microgrid** (ESM™) Methodology



2009

Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) established



Sandia develops the DOE/SNL Global Energy Storage Database



WINNER

Sandia and United Silicon Carbide, Inc., create new high voltage switch



2015

SIRFN

established

as Annex 5

of ISGAN

1990/2000s

1980s

Sandia designs first battery test facility hosted by PSE&G in NJ

Lead Center for the Exploratory Battery Technology Development and Testing Project

Interconnected PV systems work begins

US Infrastructure Assurance Strategic Roadmaps



DOE designates Sandia as US Rep to IEC TC57, (standards for information exchange for power systems)

2003/04

IEEE 1547: Standard for Interconnecting Distributed Resources with Electric Power Systems

DOE/EPRI Electricity Storage Handbook Published

Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack

Common Vulnerabilities in Critical Infrastructure Control Systems

2008

ESM work begins-LDRD



SiCPower Module

ARRA-funded

reconfiguration of

DETL to enable

high penetration

experimentation

on distributed

generation

2010

**Energy Storage** Test Pad established as the first facility to test 1MW class storage systems at a national lab

2013

R&D100: Micro Power Source

2011



Challenge SST SECURE SCALABLE MICROGRIDS
It's the end of the grid as we know it

> R&D100 Award Winners: -Ultra-high-voltage Silicon Carbide Thyristor -The Demand Response Inverter

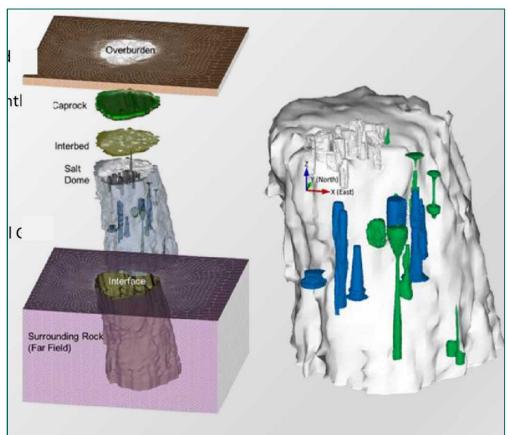


2014

Grid Modernization Continuum

Microgrid Design **Toolkit** available



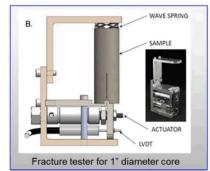





### Fossil Energy

### ш

#### U.S. Strategic Petroleum Reserve (SPR)




SPR Bayou Choctaw salt dome 3D rendering and accompanying geomechanical model

#### Clean Coal and Carbon Management Carbon Storage and Sequestration

#### Geomechanics of CO<sub>2</sub> Reservoir Seals

An in-situ fracture tester was developed to examine the effects of CO<sub>2</sub> injection on Caprock integrity by measuring the effects of different solutions and their concentrations on fracture velocities.



### SWP: Southwest Regional Partnership on Carbon Sequestration

SWP has completed an initial characterization of the potential to store CO<sub>2</sub> in geologic formations and a validation of the most promising storage opportunities. Current work is underway at the Farnsworth Unit, Texas, enhanced oil recovery site using CO<sub>2</sub> captured from ethanol and fertilizer plants that is injected into the underground oil reservoir.

#### **Chemical-Mechanical Effects on Fracture**

This work focuses on developing a fundamental atomistic-level understanding of the chemical-mechanical processes that control subcritical cracks in low-permeability geomaterials. This links atomic-scale insight to macroscale observables, with applications to fracking as well as deep geologic disposal of CO<sub>2</sub>. Work sponsored by SNL LDRD program.

## Phoenix Series Large Scale LNG Pool Fire Experiments





Blanchat, T., SAND2011-4850C

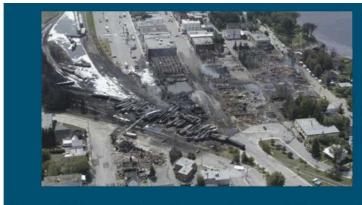
### Fossil Energy

#### Crude Oil Characterization Research Study

- Objective: Evaluate whether crude oils currently transported in North America, including those produced from "tight" formation exhibit:
  - physical or chemical properties that are distinct from conventional crudes
  - how these properties affect parameters required to assess thermal hazard distances

Crude transport by rail poses risks recognized by US & Canadian regulators & stakeholders




"Bakken crude may be more flammable than previously thought: U.S. regulator" Reuters: January 2, 2014

Casselton, ND, Dec 30, 2013

Numerous high-profile train accidents in the US and Canada


Open debate whether type of crude (tight vs. conventional) contributes to accident severity

#### **Thermal Hazard Distances**

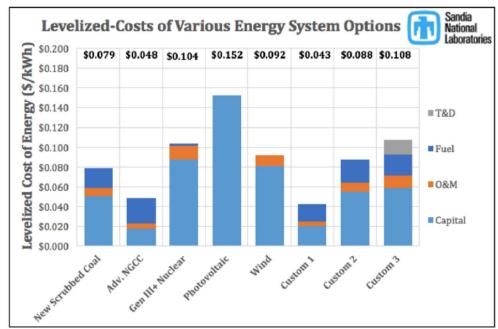


Lac-Mégantic, Canada accident site July 6, 2013

## Pool Fire and Fireball Tests (For Comparative Purposes only)

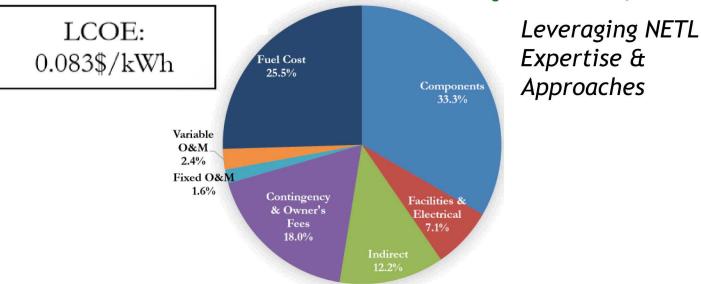


Lord, D., SAND2019-11605C; Luketa, A., SAND2019-11825C.

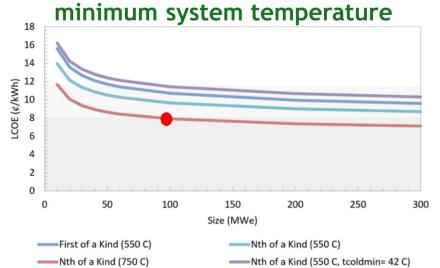

### Nuclear Energy / Clean Coal / Energy



#### **Brayton Cycle**


Sandia has been developing the Supercritical Carbon Dioxide (sCo2) Closed Brayton Cycle. Brayton Cycles can achieve higher energy conversion efficiencies at 1/10<sup>th</sup> the cost of comparable steam Rankine cycles. The technology is being demonstrated in the Nuclear Energy Systems laboratory/Brayton lab.

## An Integrated Techno-economic Modeling Tool for sCO<sub>2</sub> Brayton Cycles




Drennen and Lance, 2019, SAND2019-8738.

Estimated LCOE for an nth-of-a-kind, 100 Mwe RCBC w/dry cooling



LCOE as a function of plant size, turbine inlet temperature, &



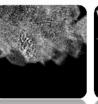
### Hydrogen: Research in Materials, Safety, Costs

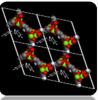


Materials – for hydrogen <u>production</u>, <u>storage</u> and <u>utilization</u>

Safety – risk analysis and the creation of risk-informed standards

#### **Hydrogen Production from Renewables**




Advanced watersplitting materials and technologies for largescale H<sub>2</sub> production

#### **Hydrogen Storage Materials and Solutions**

Discovering the behavior and performance of solid storage materials



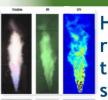




#### **Hydrogen-Materials Compatibility**



Low-cost, hydrogencompatible materials and the science basis for their qualification



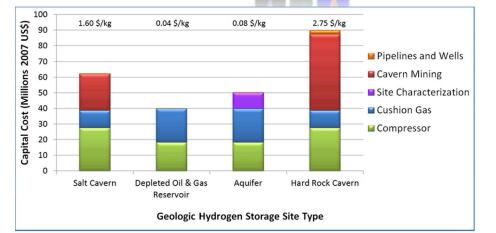

#### **Fuel Cells**



Membrane systems for enhanced electrochemical performance

#### **Hydrogen Fueling Infrastructure**



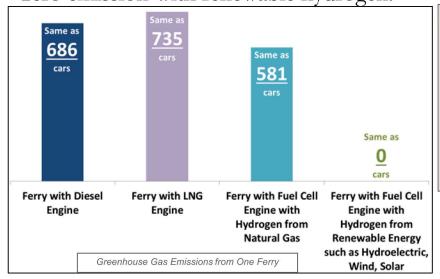

H<sub>2</sub> release behavior and risk assessment to define the safety envelope for storage & delivery

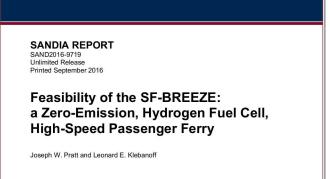
#### **Technologies for Non-Vehicle Applications**

Marine and rail applications





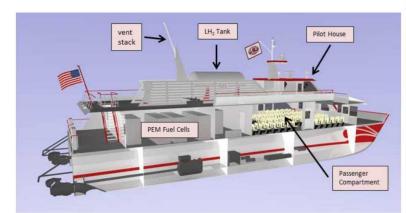


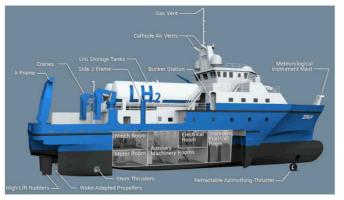


### Hydrogen

#### Feasibility of Hydrogen Fuel Cell-Powered Maritime Vessels

- Are hydrogen powered marine vessels feasible considering technical, economic and regulatory factors?
- SF-BREEZE high-speed passenger ferry
  - Catamaran design has similar capacity to existing ferry service.

 Analysis shows modest emissions reduction with SMR-produced hydrogen, zero emission with renewable hydrogen.




- >Zero-V coastal research vessel
  - Feasibility was found for a vessel able to perform 14 Scripps science missions with a 2,400 nautical mile range.



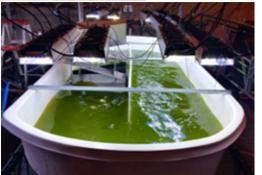






### **Biofuels**

#### Algae


Sandia is achieving success and recognition in three specific areas:

- Turf Algae
  - Robust polycultures grown on polymer mats to treat ag runoff and other nutrient-loaded surface water, and to produce algal biomass for energy / fuel / feed applications.
- The "Crash Lab"
  - Understand causes of pond crashes in algal monoculture systems
  - Develop response & prevention strategies
- Genomics
  - Leveraging expertise & capabilities to develop advanced, more productive strains of algae and cyanobacteria.

#### Biofuels & Bioproducts:

- Genomics / Metabolomics / Microbiomics
- Algae Attached "Turf" Algae & Algal Pond Stability
- Discovery Tools
  - imaging, novel sensors, micro-fluidics, field-test sites, relationships, etc.
- Biomass (pre-) Treatment & Fermentation







DOE Secretary's

Achievement Award

Pretreatment &

Process

Development Team

### Transportation

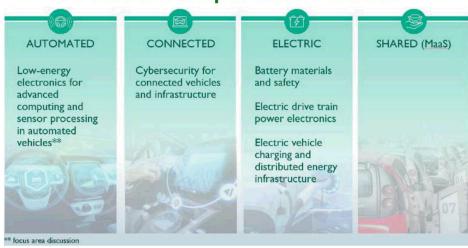
#### Co-Optimization of Fuels and Engines

What fuels do engines really want?

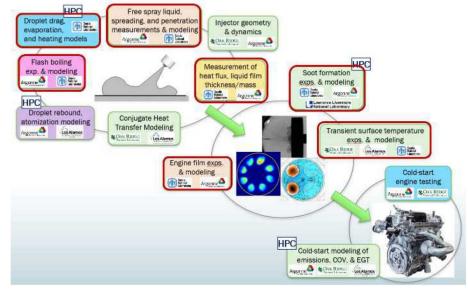
What fuels should we make?

What will work in the real world?





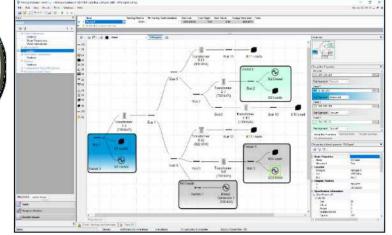




#### **Battery Safety and Extreme Fast Charging**



#### **On-Road Transportation Trends**




Fundamental Model Development Supported by High Performance Computing - Multiple National Labs

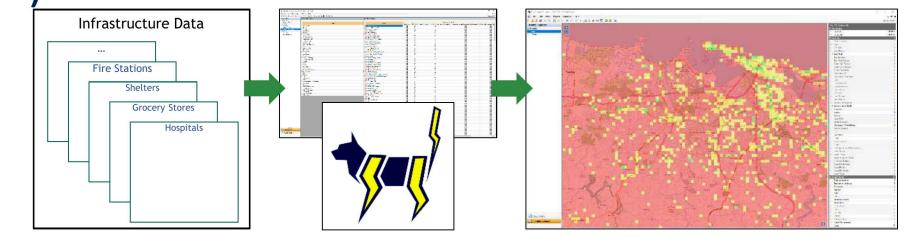



## Analysis: Sandia's Microgrid Design Toolkit (MDT)

- Produces a Pareto frontier:
  - Efficient alternative Microgrid designs and visualizations
  - To help a designer understand system trade-offs.
- Unique capability to:
  - Optimize topology, generation, and asset sizes
  - Over multiple measures of performance.
- Toolkit Attributes allow for optimized scenarios focusing on:









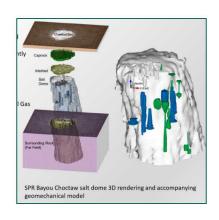


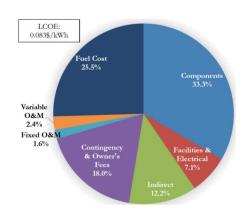

# Analysis: Resilience Node Cluster Analysis Tool (ReNCAT) 1.0

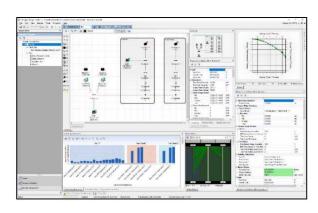
Determines Potential Microgrid locations



- ReNCAT takes infrastructure data and determines potential microgrid locations in an urban area based on high-density clusters of critical services subject to design basis threats (DBTs)
- Users can include any number of infrastructure sectors and threats, and may specify both the desired area size for microgrids and the minimum service level required
- ReNCAT displays results in report form and as a color-coded interactive map showing potential locations & service levels


- ReNCAT has been used to suggest portfolios of microgrids for the city of New Orleans and the island of <u>Puerto Rico</u>
- Version 1.0 is in the final stages of the copyright process and will be available for use by U.S. entities
- Version 2.0 is under development and will utilize optimization to locate potential microgrids that best serve the community based on the distribution system layout, population location, asset services/service levels, and cost


### Summary


- Sandia works across all major energy carrier types & select infrastructure
  - Renewables, Grid Energy Storage, Fossil, Nuclear, Hydrogen, Biofuels, Transportation, Analysis
- Sandia partners with other National Labs and Industry Partners to ensure relevance
  - Analysis capabilities, Technology Integration to existing Infrastructure

### Thank You







