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2 Welcome!

Part 1: Introduction to SST 8:45 - 10:15
SST Overview
Demos: Running a simple simulation; Enabling statistics; Running in parallel

SST Element Libraries: A tour

Break 10:15 - 10:45
SST Element Libraries: A tour
Demos: L2 Cache; Backing store; Adding processors; Adding Memory; Node modeling

Lunch

Part 2: GPGPU-Sim
GPGPU-Sim Overview & New Features

Part 3: The SST/GPGPU-Sim Integration 2 :30 - 3 :00

Break 3 :00 - 3:30

GPGPU-Sim Exercises 3 :30 - 5 :00

12:00 - 1 :30

7 :it' 2:3u



3 Outline

GPGPU-Sim Introduction
GPU and programming model
Functional model
Performance model
GPUWattch: power model

New Features in GPGPU-Sim
Volta model
Run closed source libraries
Tensor Core
Run CUTLASS library
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6 GPU Introduction

GPU = Graphics Processing Unit
Optimized for Highly Parallel Workloads

Highly Programmable

Heterogeneous computing

NVidia Tesla GV100: 80 Stream Multiprocessors(SMs)
Each SM has 64 INT32, 64 FP32, 32 FP64, 8 Tensor core
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, GPGPU Programming model evolution

GPGPU programming model:
CUDA and OpenCL

Support more features with newer architectures

CUDA 1.X
C compiler
(Testa)

CUDA

If 2008 1 2011 2013 2015 

2007

OpenCL

CUDA 3.X CUDA 4.X
C++ compiler C++ new/delete

(Fermi) No-copy system
memory

2010

OpenCL 1.0
C99 support

OpenCL 1.2
Device Partition
Built-in kernels

CUDA 6.X
Unified memory

Dynamic Parallelism
cuDNN

(Kepler, Maxwell)

2014

OpenCL 2.0 OpenCL 2.1
Shared virtual memory C++14

Nested Parallelism SPIR-V
Pipe for Vulkan

subgroup

CUDA 9.X
Cooperative groups

MPS CUDA 10.X
CUTLASS CUDA Graphs

Tensor core operation (Turing)
(Volta)

2017

OpenCL 2.2
C++14

SPIR-V 1.1

2019



8 GPU Microarchitecturel

NVidia GV100:
Hierarchical compute unit: SM=>TPC=>GPC=>GPU

Multi-level memory: L1/shmem=>L2=>HBM

GPGPU-Sim simulator models components above/
PCI Express 3.0 Host InIst1see
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[1]Volta Whitepaper. https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf



9 GPGPU-Sim Introduction

GPGPU-Sim
Widely used GPU simulator in the research community (1300+ citations).

The third most cited simulator in computer architecture field (after GEM5(+GEMS) and
SimpleScalar)

Functional model
Virtual ISA (vISA)

Machine ISA (mISA)

Performance model
Model microarchitecture timing relevant to GPU compute



10 GPGPU-Sim Introduction

GPGPU-Sim simulates kernel
Transfer data to GPU memory
GPU kernels runs on GPGPU-Sim:
Reports statistics for the kernels

Transfer data back to CPU memory

CPU

Blockin

CPU

•
•
•
•
•
•

CPU

Async. Kernel Launch

Done

Done

GPGPU-Sim

GPGPU-Sim

Sync. Kernel Launch

Done
GPGPU-Sim

Time



11 Functional model

Single Instruction Multiple Thread(SIMT):
SIMD + multithreading
Grid, Block, Warp, Thread

Virtual ISA vs. Machine ISA
vISA: PTX = Parallel Thread eXecution: virtual ISA defined by Nvidia

mISA: SASS = Native ISA for Nvidia GPUs

GPGPU-Sim use PTXPIus to represent SASS
1:1 mapping from SASS to PTXPIus

GPGPU-Sim supports:
PTX for new architectures(CUDA 10): new, inaccurate, well documented
SASS for architecture before Fermi(SM_1.X): old, accurate, less documented



12 Performance model

GPGPU-Sim models timing
SIMT Core

Caches and texture/constant/shared memory

Interconnection network(Booksim)

DRAM(GDDR5/HBM)

DO NOT model
Graphic Specific Hardware

Single-Instruction, Multiple-Threads

1 GPU1  
1 I SIMT Core Cluster
1 7

SIMT SIMT

Core Core

SIMT Core Cluster

SIMT SIMT

Core Core

SIMT Core Cluster

Interconnection Network

SIMT

Core Core

th-

SIMT 

t t I
Memory

Partition

Memory

Partition

GDDR5/HBM i GDDR5/HBM 1

• • •

Off-chip DRAW

Memory

Partition

GDDR5/HBM



13 GPUWattch: Power model

Estimate power consumed by the GPU according to the timing behavior

Ideal for evaluating fine-grained power management mechanisms

Validated with power measurements from GV100

Modified McPAT

• Modifications: Specific
micro-architectural
components

Static Dynamic
Power Power

m

Performance counters

Detailed Power
Stats

Feedback-driven
Optimizations

ua) GPGPU-Sim

• Modifications: Add
required performance
counters

Detailed
Performance Stats

A Comprehensive Framework for Performance and Energy Optimization Research
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1 6 New Feature:Volta Model Motivation

ISA cycle correlation1 before new Volta model2
For Pascal Titan X

Benchmark
Means Abs Error Correlation

vISA  mISA vISA  mISA

Compute
Intensive

43.3% 21.9% 91.1% 99.0%

Cache
Sensitive

104.8% 100.4% 81.2% 82.0%

Memory
Sensitive

31.6% 29.8% 96.0% 95.1%

Compute
Balanced

58.5% 70.7% 96.1% 93.5%

Result
Compute intensive: mISA > vISA

Cache sensitive: both show
inaccurate cache model

Memory sensitive(streaming): not
related to cache model

Compute balanced: vISA > mISA

[1] Akshay Jain, Mahmoud Khairy, Timothy G. Rogers, A Quantitative Evaluation of Contemporary GPU Simulation Methodology. SIGMETRICS 2018
[2] Mahmoud Khairy, Jain Akshay, Tor Aamodt, Timothy G Rogers, Exploring Modern GPU Memory System Design Challenges through Accurate Modeling, arXiv:1810.07269



17 New features:Volta modell

Fermi-based Model

SIMT Core Memory Hierarchy
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[1] Mahmoud Khairy, Jain Akshay, Tor Aamodt, Timothy G Rogers, Exploring Modern GPU Memory System Design Challenges through Accurate Modeling, arXiv:1810.07269
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Instruction Cache

Warp
Scheduler
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File
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SFU
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Tensor
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Scheduler

Register
File
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Volta coalescer (8 threads coalescer)

t 
L1D Cache / Shared Memory

+Sectored, +Adaptive cache (128 KB),
+Streaming cache +Banked

v

L2 Cache
+Sectored, +memory copy engine model
+New Lazy_Fetch_on_Read write policy,

+partition-camping-aware hashing

v
HBM

+ HBM Model, +dual-bus interface
+ Read/Write buffers
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19 Hardware correlation forVolta modell

Statistic
Means Abs Error Correlation

Old
Model

New
Model

Old
Model

New
Model

Execution
Cycles

68% 27% 71% 96%

L1 Reqs 48% 0.5% 92% 100%

L1 Fin
Ratio

41% 18% 89% 93%

L2 Reads 66% 1% 49% 94%

L2 Writes 56% 1% 99% 100%

L2 Read
Hits

80% 15% 68% 81%

DRAM
Reads

89% 11% 60% 95%

2.5X error reduction
in exec time

0.5% error in L1 reqs
(96x reqs error reduction)

SIMT Core_
Memory Hierarchy

1% error in L2 behavior
(66x read error reduction)

7X error reduction
in DRAM reads

[1] Mahmoud Khairy, Jain Akshay, Tor Aamodt, Timothy G Rogers, Exploring Modern GPU Memory System Design Challenges through Accurate Modeling, arXiv:1810.07269



20 Run closed source modell

Run applications with cuDNN/cuBLAS
Static linking closed source libraries
LeNet for MNIST using cuDNN/cuBLAS

Executable

Application

static cuDNN library

static cuBLAS library

GPGPU-Sim

CUDA runtime API layer

Performance model

Functional model

[1] Jonathan Lew, Deval Shah, Suchita Pati, Shaylin Cattell, Mengchi Zhang, Amruth Sandhupatla, Christopher Ng, Negar Goli, Matthew D. Sinclair, Timothy G. Rogers,
Tor M. Aamodt Analyzing Machine Learning Workloads Using a Detailed GPU Simulator, arXiv:1811.08933



21 Tensor Core in GV100

Accelerate FP operations

8 Tensor Core/SM

Each perform 64 FP FMA/clock

512 FMA/clock/SM

Or 1024 FP ops/clock/SM

SM

• LO lnstructi

Warp Scheduler (32 tit

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

CORE

61

1111

LD/ LD/ LOt LD/ LD/ LW
ST ST ST ST ST ST ST ST

TENSOR

CORE

SFU

ache

LO Instruction Ca

Mr Warp Scheduler (32 thre

Dispatch Unit (32 thread/clk)

FP64

FP15/111

FP641

FP6411

FP641

FP641

FP641

FP64

TENSOR

CORE

LDI LDI LD/ LD/ LDI LD/ LD/ LD/
ST ST ST ST ST ST ST ST

TENSOR

CORE

SF

TENSOR

CORE

LD/ LD/ LDI LDf LD/ LDI LD/
ST ST ST ST ST ST ST ST

Dispatch Unit (32 thread/clk)

tRegister File (16,384 x 32-bit)

TENSOR

CORE

LIN LDI LD/ LDI LDI LD/ LDI LD/
ST ST ST ST ST ST ST ST SFU



22 Tensor Core in Tesla Titan V1

Standard deviation of less than 5%

99.60% IPC correlation

GPGPU-Sim shows higher perf than HW as matrix size increase
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Squared Matrix Size

(a) WMMA-based GEMM kernel cycle
count as matrix size varies.
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(b) Instructions per cycle (IPC) corre-
lation of CUTLASS GEMM kernel on
GPGPU-Sim vs Titan V.

NVIDIA VOLTA • GPGPUSIM

• i 

128 256 512 758 1024 2048
Square Matrix Size

(c) CUTLASS-based GEMM kernel cycle
count as matrix size varies.

1
1

[1] Md Aamir Raihan, Negar Goli, Tor Aamodt, Modeling Deep Learning Accelerator Enabled GPUs, ISPASS 2019



23 Run CUTLASS library

Combine CUTLASS, tensor corel, and volta model2

Correlation: using Deepbench training/inference test from real scenario
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1E+8

1E+6

1E+4

• CUTLASS cycles[Cor=99.91%, Err=5.22%]

1E+4 1E+6 1E+8

Hardware
[1] Md Aamir Raihan, Negar Goli, Tor Aamodt, Modeling Deep Learning Accelerator Enabled GPUs, ISPASS 2019
[2] Mahmoud Khairy, Jain Akshay, Tor Aamodt, Timothy G Rogers, Exploring Modern GPU Memory System Design Challenges through Accurate Modeling, arXiv:1810.07269
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24 Summary

GPGPU-Sim:
Simulates GPU compute unit and memory hierarchies.
an evolutional simulator for new features in CUDA and GPUs.
actively including new features

GPGPU-Sim with SST:
GPGPU-Sim brings promising GPU model to SST
GPGPU-Sim benefits for SST parallel simulation architecture
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„ Thread Hierarchy Revisited

• Recall, kernel = grid of blocks of
warps of threads

• Threads are grouped into warps in
hardware

SIMT Core

Thread Block
(CTA)

32 Threads

32 Threads

.11311
32 Threads

Grid 0

Block (0, 0)

Block (0, 1)

Block (2,, Oil

Block (2,, 1)

Source: NVIDIA

Each block is dispatched
to a SIMT core as a unit
of work: All of its warps
run in the core's pipeline
until they are all done.



28 Inside a SIMT Core

Done (Warp ID)

, ma Tell

• Fine-grained multithreading

• Interleave warp execution to hide latency

• Register values of all threads stays in core

7"'



29 SIMT Stack

foo[] = {4,8,12,16};

A: v = foo[tid.x];

B: if (v < 10)

C. v = 0;

else

D: v = 10;

E: w = bar[tid.x]+v;

1010131133T4

auT4
101013233T4

One stack per warp
SIMT Stack 

PC RPC Active Mask

E - 1111

D E 0011

C E 1100

Handles Branch Divergence



30 Constant Cache

A Read-only cache for constant memory

GPGPU-Sim simulates 1 read ports
A warp can access 1 constant cache locations in a single memory unit cycle 

If more than 1 locations accessed
reads are serialized causing pipeline stalls

# of ports is not configurable



Coalescing

Combining memory accesses made by threads in a warp into
fewer transactions

E.g. if threads in a warp are accessing consecutive 4-byte sized
locations in memory
Send one 128—byte request to DRAM (coalescing)

Instead of 32 4-byte requests

This reduces the number of transactions between SIMT cores
and DRAM
Less work for Interconnect, Memory Partition
and DRAM



32 Interconnection Network Model

lntersim (Booksim) a flit level simulator
Topologies (Mesh, Torus, Butterfly, ...)

Routing (Dimension Order, Adaptive, etc. )

Flow Control (Virtual Channels, Credits)

We simulate two separate networks
From SIMT cores to memory partitions
Read Requests, Write Requests

From memory partitions to SIMT cores
Read Replies, Write Acks



33 PTX

Low-level data-parallel virtual ISA
Instruction level

Unlimited registers

Parallel threads running in blocks; barrier synchronization instruction

Scalar ISA
SIMT execution model

Intermediate representation in CUDA tool chain
iriaa_  

H 
Mil



34 SASS

Native ISA for Nvidia GPUs
Better correlation with HW but less documented
Related with Stream Multiprocessor(SM) version.

Scalar ISA

GPGPU-Sim use PTXPIus to represent both SASS and PTX

conversion

SASS mapped 1:1 into PTXPIus instruction



„ PTX vs. SASS

PTX SASS (PTXPIus)
$Lt_25_13570: 10x00000060:

Id.global.s32 %r9, [%rd5+0]; add.half.u32 $r7, $r4, Ox00000400;

add.s32 %r10, %r9, %r8; Id.global.u32 $r8, [$r4];

Id.global.s32 %rl 1, [%rd5+1024]; Id.global.u32 $r7, [$r7];

add.s32 %r8, %rl 1, %r10; add.half.u32 $r0, $r5, $r0;

add.u32 °A r5, O/or7, 0/0r5; add.half.u32 $r6, $r8, $r6;

add.u64 %rd5, %rd5, %rd6; set.gt.u32.u32 $p0/$o127, s[0x0020], $r0;

Id.param.u32 %r6, [size]; add.half.u32 $r6, $r7, $r6;

setp.lt.u32 %p2, %r5, %r6; add.half.u32 $r4, $r4, $r3;

@%p2 bra $Lt_25_13570; @$p0.ne bra 10x00000060;

mov.u32 %r12, 127; set.gt.u32.u32 $p0/$ol 27, $r2, const [0x0000];

setp.gt.u32 %p3, %r3, %r12; @$p0.equ add.u32 $ofs2, $ofsl, Ox00000230;

@%p3 bra $Lt_25_14082; @$p0.equ add.u32 $r6, s[$ofs2+0x0000], $r6;

Id.shared.s32 %r13, [%rd 10+512]; @$p0.equ mov.u32 s[$ofs1+0x0030], $r6;

add.s32

st.shared.s32

%r8, %r13, %r8;

[%rd10+0], %r8;

bar.sync Ox00000000;

$Lt 25 14082:

bar.sync 0;



Interfacing GPGPU-Sim to applications

GPGPU-Sim compiles into a shared runtime library and implements
the API:

D libcudart.so F CUDA runtime API

0 libOpenCL.so F OpenCL API

CUDA runtime API

User level

Operating system

Hardware

Application ] libcudart.so

1
CUDA Driver

GPU hardware



Interfacing GPGPU-Sim to applications

GPGPU-Sim compiles into a shared runtime library and implements
the API:

D libcudart.so F CUDA runtime API

0 libOpenCL.so F OpenCL API

CUDA runtime AF

Application

1 libcudart.so

] CUDA runtime API layer

Performance model

Functional model



38 GPGPU-Sim Runtime Flow

Cuobjdump Cuobjdump

PTX PTXPlus
Application

Source Code(.€PP) Source Code
(xu)

nvcc + ptxas

c/C++ compiler

Executable

PTX LSA5S

cuobjclurrip

PTX

Compile Time

Run Tirne

ISOU rce Code
(,cpro)

SOU r ce Code
(.cu)

nvcc + ptxa5

C/C++ compiler

Executa ble

PTX LSASS

cuotijdump

SASS ELF

Compile Time

Run Time

ptxas ptxaisj .cuoiljdurnp_to_ptxplus

11 1
register usage register usage r_PTXPILFs_

GPGPU-Sim GPGPLI-Sim
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