

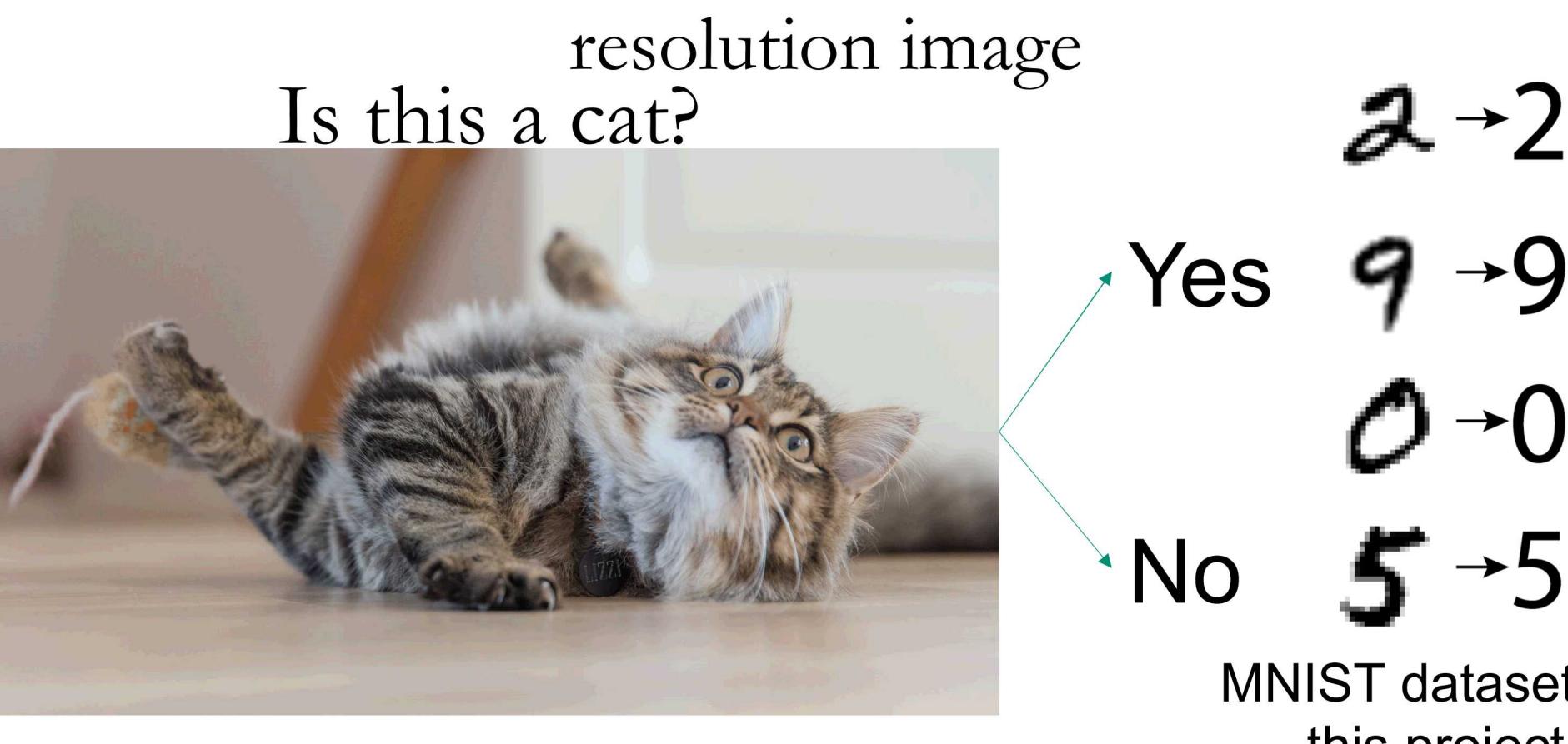
OPTIMIZING A COMPRESSIVE IMAGER FOR MACHINE LEARNING TASKS

Brian J. Redman^{1,2}, Daniel Calzada¹, Jaime J. Wingo^{1,3}, Tu-Thach Quach¹, Meghan Galiardi¹, Amber L. Dagel¹, Charles F. LaCasse¹, and Gabriel C. Birch¹

¹Sandia National Laboratories, ²University of Arizona, ³University of New Mexico

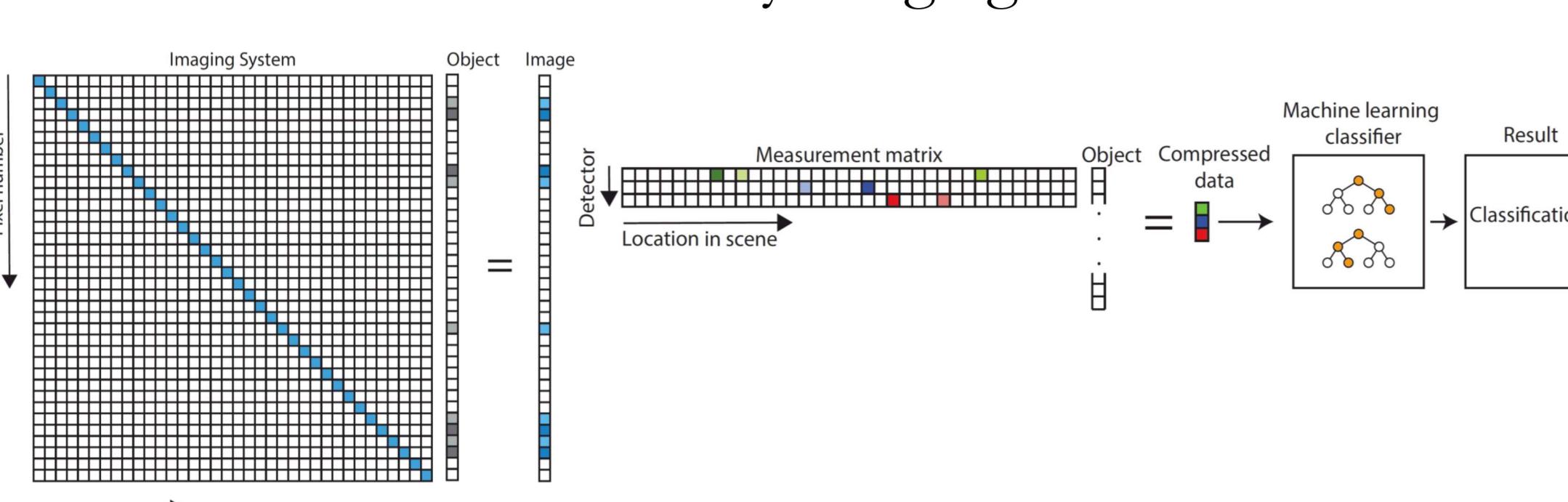
Task-specific optical systems

The final data product is a decision not a high resolution image



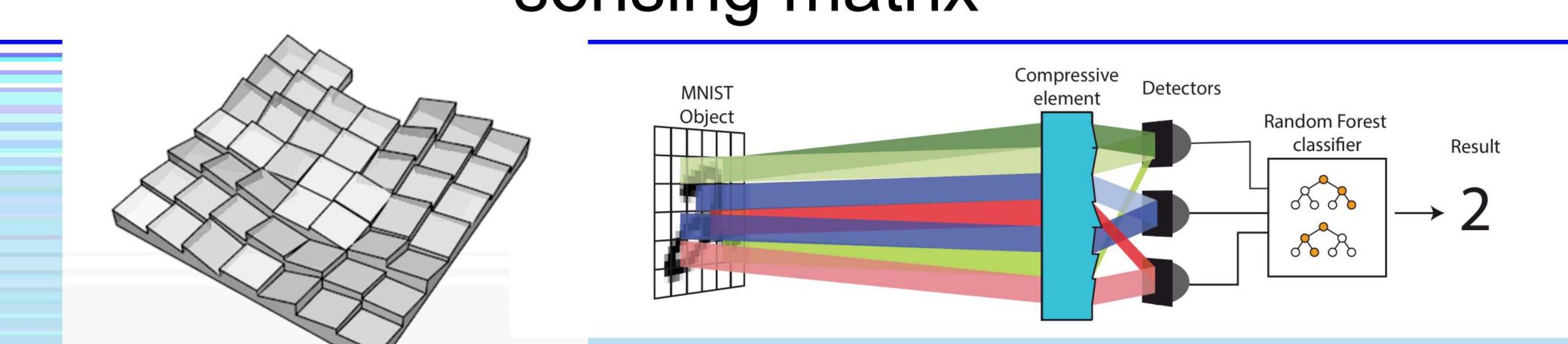
Compressive Classification

Unconstrained by imaging



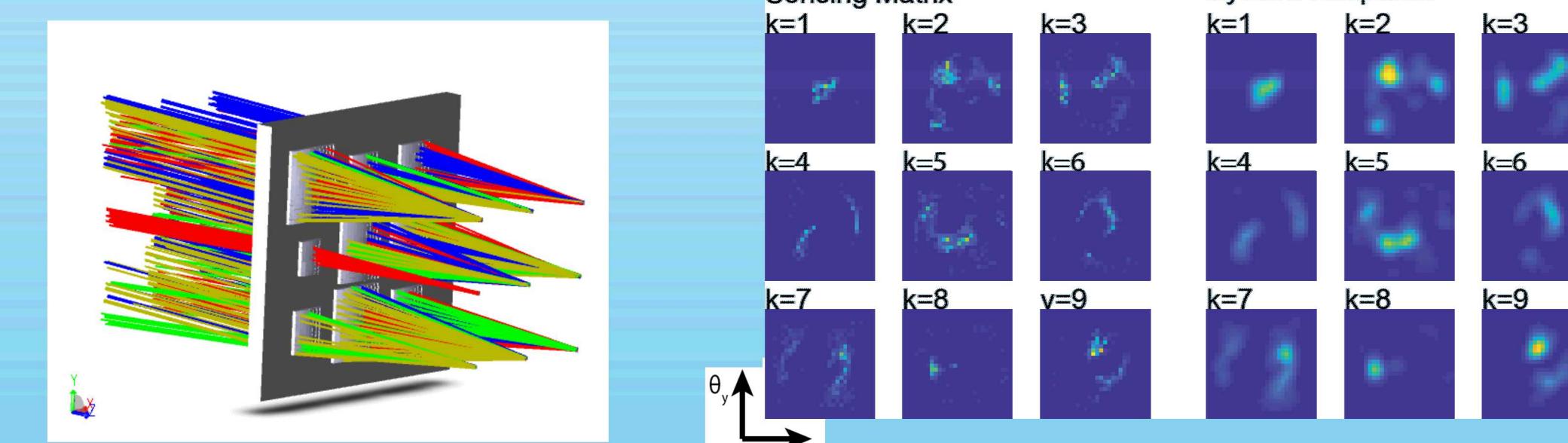
Prism arrays

Monolithic hardware to realize compressive sensing matrix

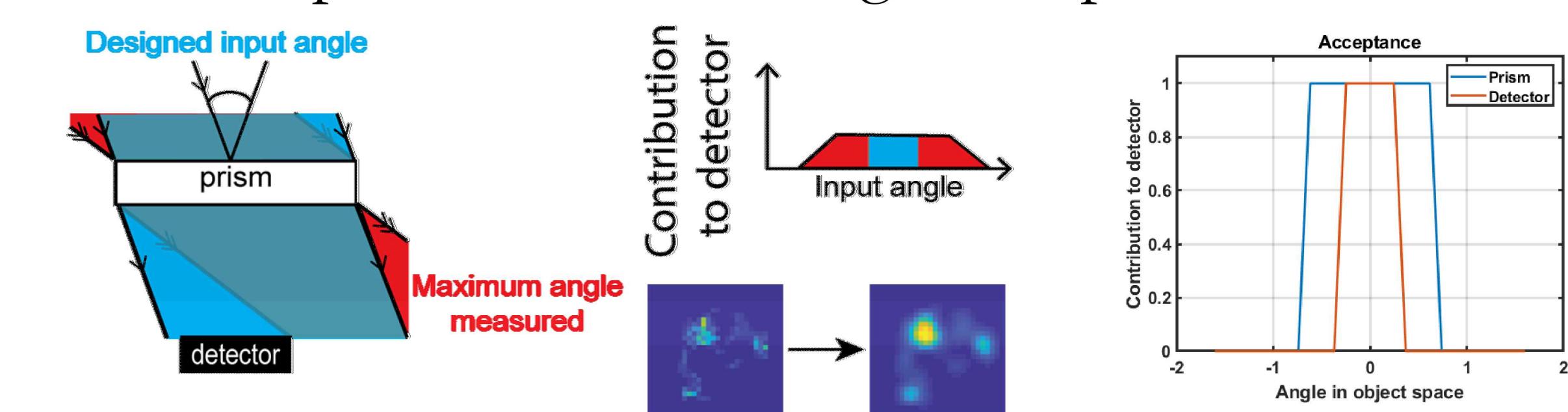


Simulations of hardware

Non-sequential ray tracing

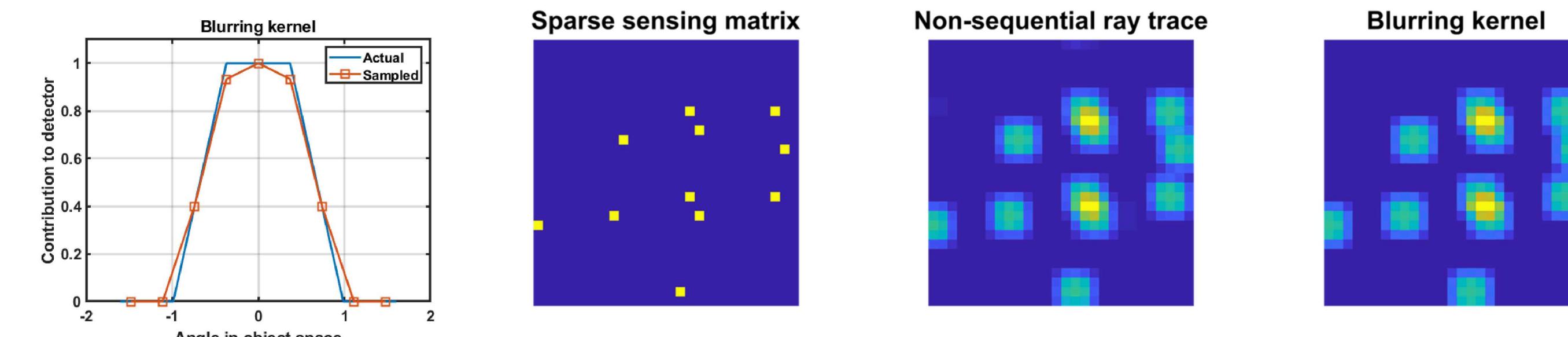


Width of prism sets cone of light accepted



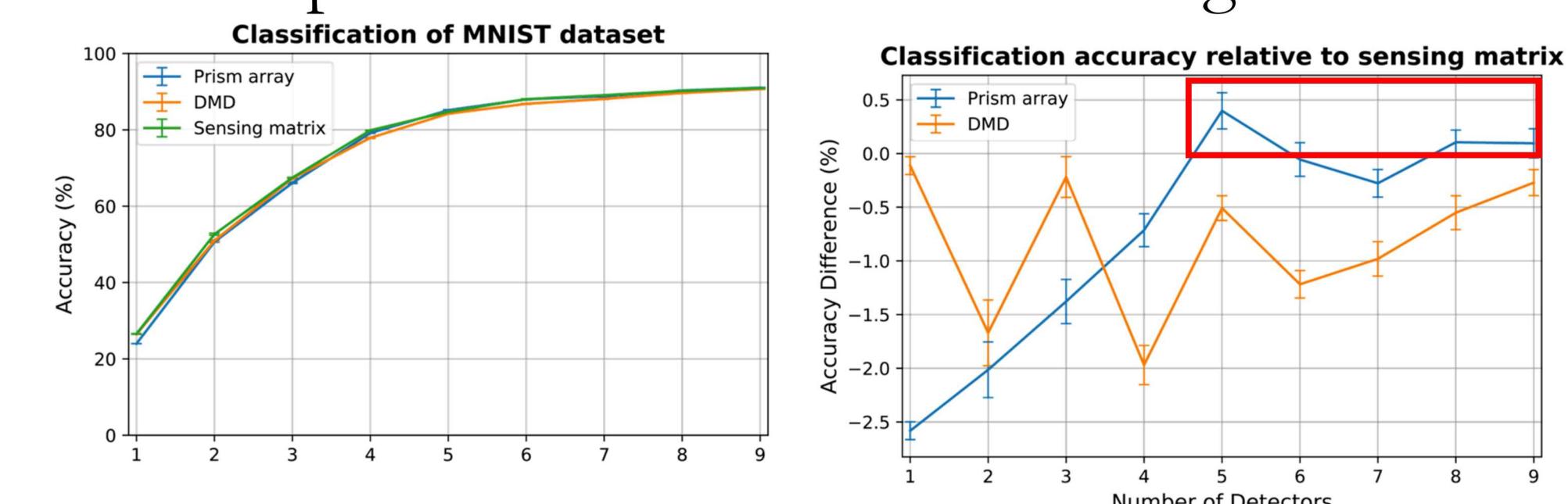
Simulating blurring

Blurring kernel faster than non-sequential ray trace



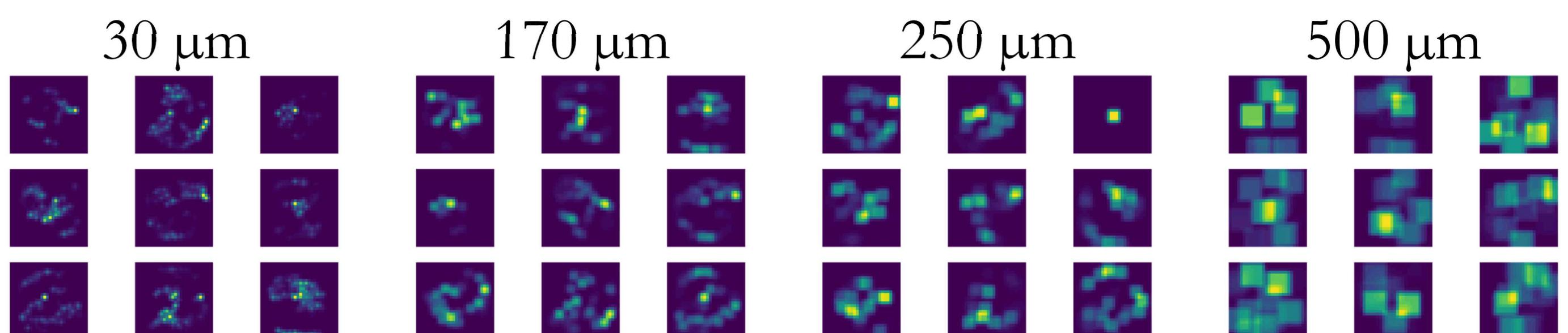
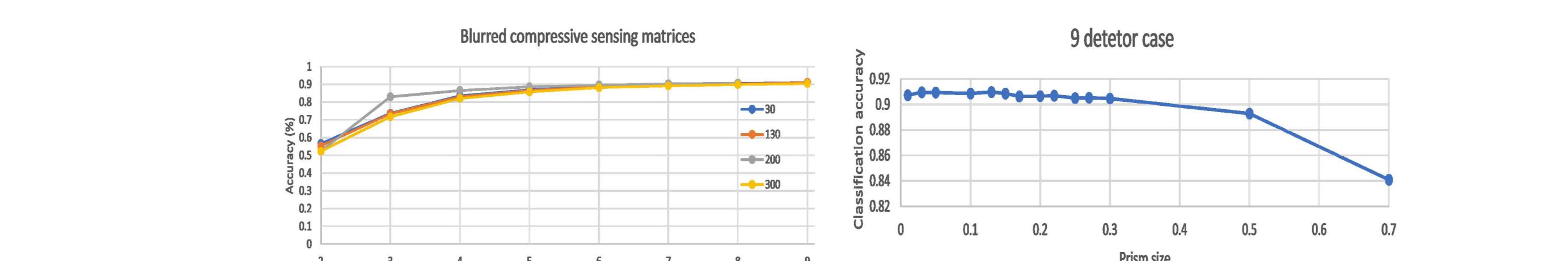
Classification Accuracy

Blurred system response matrix had higher accuracy than compression matrix that it was designed from



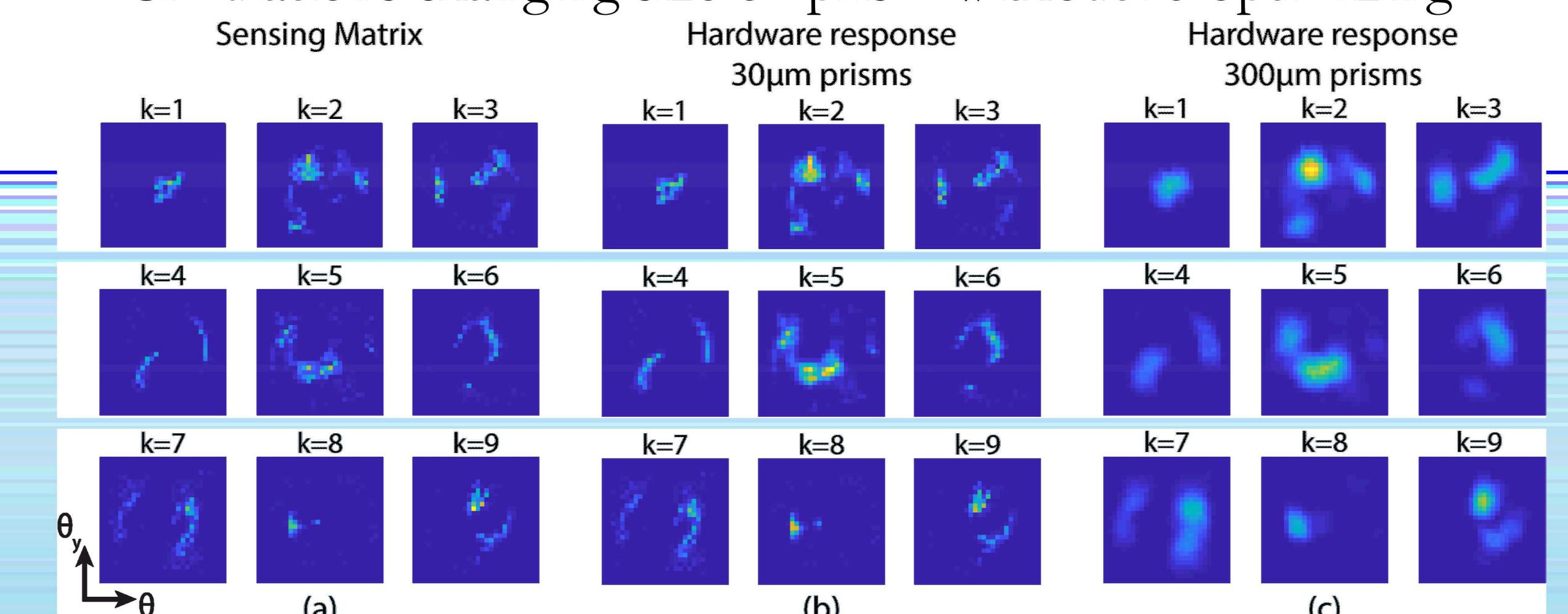
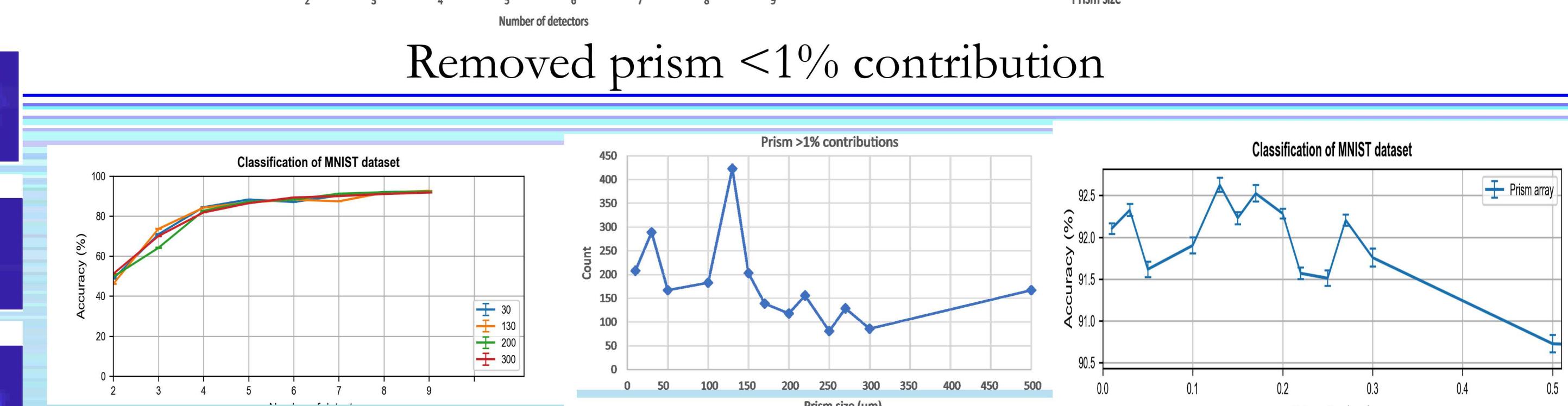
Optimizing prism size

Neural network optimizes compressive sensing matrix based on the prism width



Changing Prism size

Simulations changing size of prism without re-optimizing



Conclusion

Concurrently optimizing the sensing matrix and the hardware design has the potential to both improve performance and increase sparsity.