Lessons Learned in the Development of
Source Term Surrogate Models for
Repository Performance Assessment
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Objectives

Develop surrogate models

For the Fuel Matrix Degradation (FMD) process
model

For use by PFLOTRAN in GDSA Framework!

Assess performance
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Lessons learned

'GDSA Framework is U.S. DOE’s Geologic Disposal Safety Assessment (GDSA) framework for
probabilistically assessing the performance of geologic nuclear waste repository concepts
(pa.sandia.gov)
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(Figure adapted from Jerden et al. 2017)



3 | Fuel Matrix Degradation (FMD) Process Model

Complex set of processes
Radiolysis
Oxidation of H, via noble metal particle
(NMP) catalyst
1-D reactive transport through alteration layer
Growth of the alteration layer

Diftusion ot reactants and products through
the alteration layer

Expensive in a repository PA calculation

(Figure adapted from Jerden et al. 2017)
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Surrogate models

*Developed 3 surrogate models

* 2 parametric
' Polynomial regression
* Neural network regression
*1 non-parametric
* k-Nearest Neighbors regression (kNN¥)

*Used training data from

FMD process model
- MATLAB
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Process
model

-

Surrogate
models
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Matlab FMD process model domain and inputs/outputs

*Domain

* 1D, fuel surface to bulk water, 50 mm

*Inputs/outputs each time step

Boundary
bulk

. % | reactions ;ell
Domains | Jiffusion (Envi. Conc.)
e (zero volume)
(zero solid)

Fuel & NMP

+«— 50 mm —

Inputs

Outputs

Initial concentration profiles across 1D corrosion/water layer Final concentration
(UO,(s), UO4(s), UO,(s), H,O,, UO,%*, UCO,%, UO,, CO,4%, profiles across 1D

O,, Fe?*, and H,)
Initial corrosion layer thickness

Dose rate at fuel surface (= f (time, burnup))
Temperature

Time, time step length
Environmental concentrations (CO4%, O,, Fe?*, and H,)

corrosion/water layer
Final corrosion layer
thickness

Fuel dissolution rate




¢ | Surrogate training / testing data

Six-dimensional space

Matlab FMD process model

simulations

Latin hypercube sampling (LHS)

Hach sim with 101 points in time,
logarithmically spaced from 0 to 10° yr

1,908 training simulations for
parametric surrogates

15,169 training simulations for kNNr
Log transformations for
regressions

Inputs (not temperature)

Outputs

Parameter

Init. Temp. (C)

Burnup
(Gwd/MTU)

Env. CO;?
(mol/m?3)

Env. O2
(mol/m3)

Env. Fe?*
(mol/m?3)

Env.H,
(mol/m?3)

Dist.

Uniform
Uniform

Log-
uniform

Log-
uniform
Log-
uniform
Log-
uniform

Min.

Max.




Order 5 Polynomial Surrogate

Black = test data
Purple = surrogate

Error analysis £
\=§/ ,o
x -
Relative pointwise absolute error g "
: " | Polynomial
(RPWAE) at each point
RPWAE = |ypred ytruel §
Ytrue 2
X -
Surrogate | Terms/ | Train R? Train Test R? Test =
Coeffi- M IET Mean Neural Network
cients RPWAE RPWAE I T et
Polynomial 0.952 0.858 0.942
(Order 5)
Neural 0.978 0.40 0.972
Network
kNNr NA NA NA
(=7)
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Polynomial surrogate model

coupled to PFLOTRAN

Adapted to earlier version of
}[))rocess model coupled to

FILLOTRAN
Tested on 2D example

52 waste packages

Coupled polynomial

surrocgate ~200X faster than Run Time (seconds)

Coup Cd Pfocess mOdel Coupled FMD Coupled Polynomial
Module Process Model Surrogate Model

Neural network and kNNt

Flow

surrogates not yet coupled
and tested for run time effects &SR

Waste Form



9 | Lessons learned / reaffirmed (1/3)

Understand the process model

Identity all potential predictors — full set may
not be obv1ous at first

The optimal predictors used by the surrogate
may be quite different from the inputs used by
the process model

Significant vs. insignificant inputs vs. lumped parameters

State variables from previous time step may not be needed for
surrogates

The surrogate model may need to calculate
values for predictors and store them for use in
the following time step

(Figure adapted from Jerden et al. 2017)



Lessons learned / reaffirmed (2/3)

Consider how the surrogate model will be
applied to the performance assessment
model

e.g., PA model time frame and time step size

Include explicit process model calculations
in the surrogate model

e.g.,
Dose Rate = f(time, burnup)

Number of Waste Packages Breached
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WPs Breached over Time
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50% (1680) by 22,680 v

10% (336) by 4050 y
3% (117) by 405 y
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Lessons learned / reaffirmed (3/3)

Prior to generating training data

Perform a spatial and temporal
convergence study on the process
model

Identify outliers that may indicate a
potential problem with the process
model

Generate training and testing
data for the realm of interest

Do not include outputs much beyond
the domain of the application

Process model time steps may be very

different than needed for PA model
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Neural Network Predictions on the Test Set

10°
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- prediction




*Future work

Surrogate model comparison

*All three surrogate models

* Highly accurate and fast

*Of the parametric FMD surrogate models

* Neural network surrogate provided more accuracy
than the polynomial surrogate

*Of all three surrogates

* Non-parametric kNNr surrogate provided most
accuracy

* Couple all surrogates to PFELOTRAN for fair

accuracy/speed comparison
* Evaluate relative cost of development
* Identify additional potential improvements
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models
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