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2 Objectives

•Develop surrogate models
• For the Fuel Matrix Degradation (FMD) process
model

• For use by PFLOTRAN in GDSA Framework1

•Assess performance
Accuracy

Speed

•Lessons learned

1GDSA Framework is U.S. DOE's Geologic Disposal Safety Assessment (GDSA) framework for
probabilistically assessing the performance of geologic nuclear waste repository concepts
(pa.sandia.gov)

H2

2

H202

1...10rOPUO2(aq)

74-)
Predpitate:
z slows diffusion
, blocks surface

Radial sis

H262 ij

02

20F1"

•(schoepite,:.:
teetkvJty treddiim dif 046,1. studtite)

.
porosity

phas- " 4 4N•• \V/7.411,

gc.Ars'fA, 

•

(Figure adapted from Jerden et aI. 2017)  



3 Fuel Matrix Degradation (FMD) Process Model

•Complex set of processes
Radiolysis

• Oxidation of H2 via noble metal particle
(NMP) catalyst

4 1-D reactive transport through alteration layer

Growth of the alteration layer

• Diffusion of reactants and products through
the alteration layer

•Expensive in a repository PA calculation
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4 Surrogate models •
Process
model

•Developed 3 surrogate models
• 2 parametric

• Polynomial regression

• Neural network regression

• 1 non-parametric
k-Nearest Neighbors regression (k\Nr)

Used training data from
FMD process model

• MATLAB

Total n 29 1M)

Su rrogate
models



5 Matlab FMD process model domain and inputs/outputs

Domain

1D, fuel surface to bulk water, 50 mm

Inputs/outputs each tlme step

Fuel & NMP

Domains

7-

bulk
reactions
diffusion

Boundary

Cell
(Envi. Conc.)
(zero volume)

(zero solid)

4-- 50 mm —÷

Inputs

• Initial concentration profiles across 1 D corrosion/water layer
(UO2(s), UO3(s), U04(s), H202, U022+, UC032-, UO2, C032-,
02, Fe2+, and H2)

• Initial corrosion layer thickness
• Dose rate at fuel surface (= f (time, burnup))
• Temperature
• Time, time step length
• Environmental concentrations (C032-1 02, Fe2+, and H2)

• Final concentration
profiles across 1D
corrosion/water layer

• Final corrosion layer
thickness

• Fuel dissolution rate



6 Surrogate training / testing data •

Six-dimensional space

Matlab FMD process model
simulations
• Latin hypercube sampling (LHS)
• Each sim with 101 points in time,
logarithmically spaced from 0 to 105 yr

• 1,908 training simulations for
parametric surrogates

• 15,169 training simulations for kNNr

•Log transformations for
regressions
• Inputs (not temperature)

• Outputs

Parameter Dist. Min. Max.

Init.Temp. (C)

Burnup
Gwd/MTU
Env. C032-
mol/m3
Env. 02
mol/m3

Uniform 298 373

Uniform 20 90

Log- 10-6 10°
uniform
Log- 10-6 10-1

uniform
Log- 10-6 10-5

uniform
Log- 10-6 10-1

uniform



Order 5 Polynomial Surrogate

.......... 
............. 

..... ...........

7 Error analysis

•Relative pointwise absolute error
(RPWAE) at each point

RPW AE = 
137pred Ytruel

Ytrue

Surrogate

Polynomial
Order 5
Neural
Network

Terms /
Coeffi-
cients

Train R2 Train
Mean
RPWAE

Test R2 Test
Mean
RPWAE

0

462 0.952 0.858 0.942 0.898

801 0.978 0.40 0.972 0.635 LU

<

NA NA NA NA 1 x 10-5

Polynomial

Time (years)

Neural Network Predictions on the Test Set

Neural Network

10-2

10-7

10-12

.2
Time (years)

Black = test data
Purple = surrogate

- test data
prediction

103

kNNr

0 50000
Time (years)

100000



8 Speed

•Polynomial surrogate model
coupled to PFLOTRAN
• Adapted to earlier version of
process model coupled to
PFLOTRAN

Tested on 2D example
52 waste packages

•Coupled polynomial
surrogate r-'200x faster than
coupled process model

•Neural network and kNNr
surrogates not yet coupled
and tested for run time effects

Time: 1.00000E+02 years
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9 Lessons learned / reaffirmed (1/3)

•Understand the process model
Identify all potential predictors — full set may
not be obvious at first
The optimal predictors used by the surrogate
may be quite different from the inputs used by
the process model
• Significant vs. insignificant inputs vs. lumped parameters

• State variables from previous time step may not be needed for
surrogates

• The surrogate model may need to calculate
values for predictors and store them for use in
the following time step
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io Lessons learned / reaffirmed (2/3) •

•Consider how the surrogate model will be
applied to the performance assessment
model

e.g., PA model time frame and time step size

Include explicit process model calculations
in the surrogate model

e.g.,

Dose Rate = f (time, burnup)
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Lessons learned / reaffirmed (3/3) •

Prior to generating training data
Perform a spatial and temporal
convergence study on the process
model

• Identify outliers that may indicate a
potential problem with the process
model

•Generate training and testing
data for the realm of interest
• Do not include outputs much beyond
the domain of the application

• Process model time steps may be very
different than needed for PA model

Neural Network Predictions on the Test Set

— test data

  prediction

10 10' 102
Time (years)



I 2 Surrogate model comparison •
Process
model

°All three surrogate models
• Highly accurate and fast

°Of the parametric RAID surrogate models
• Neural network surrogate provided more accuracy
than the polynomial surrogate

°Of all three surrogates
• Non-parametric kNNr surrogate provided most
accuracy

•Future work
• Couple all surrogates to PFLOTRAN for fair
accuracy/speed comparison

• Evaluate relative cost of development

• Identify additional potential improvements

Total n 29 1M)

Su rrogate
models
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Questions? Comments?


