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, | Vision: Dynamic Multi-Functional IR Sensing
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|. One color for whole array
2. Moving Parts
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Always the Bridesmaid: Infrared Dielectrics

Dynamic, Tunable, Infrared Devices

Switchable Optical Material Nanoantenna Enhancement Tunable IR Plasmonics
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Environment & Surroundings Tunable IR Filters
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¢ | ldea: Designer Phonons for Infrared Optics
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TO & LO Splitting (cm™)
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i ‘ Phonon "Flavored” Graphene Infrared Filters

DNA: Graphene_\
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» | Reflection: Leveraging Dielectrics
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Transmission: Low-Voltage Tuning
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| Tunable Integrated Pixel (TIP)

Detector and tunable filter all in one
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s | TIP Spectral Photoresponse
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« | Where’s the ceiling?
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» | Tailoring Tuning with Dielectrics
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» | Take Home Message

Dynamic, tunable, infrared sensing at pixel level

Graphene allows integration directly
atop detector (mat’l agnostic)

Dielectric determines
tunability.
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Possibilities...Coherence & Localization
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s)/aelini=s - Formation of “coherent” superlattice phonon modes
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» | Possibilities...Coherence & Localization
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