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2 Vision: Dynamic Multi-Functional IR Sensing
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Problems:
1. One color for whole array
2. Moving Parts

Images: Jasco & TelOps



I Always the Bridesmaid: Infrared Dielectrics
Dynamic, Tunable, Infrared Devices
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4 1 Perspective: Integrated Graphene Infrared Filters

CM Spectrally tunable filters at single pixel level
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Next: Sculpting Plasmons
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5 1 Premise:Waves Interact
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Idea: Designer Phonons for Infrared Optics
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• eg. • Designing Optical Response via Phonon Alloys
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Tunable Plasmonics via Tunable Phonons
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Coherency in Optical Response
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1° I E itaxial Superlattices: STO/CTO
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11 Phonon "Flavored" Graphene Infrared Filters

DNA: Graphene

+
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12 I Reflection: Leveraging Dielectrics
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13 I Transmission: Low-Voltage Tuning
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14 I unable ntegrated Pixel (TIP)

Detector and tunable filter all in one
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Details: Goldflam....Beechem et al. In Preparation



15 I TIP Spectral Photoresponse
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1 6 Where's the ceiling?
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17 I Tailoring Tuning with Dielectrics
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18 Tailoring Tuning with Dielectrics
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19 Take Home Message
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Dynamic, tunable, infrared sensing at pixel level
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Possibilities...Coherence & Localization

Formation of "coherent" superlattice phonon modes
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21 I Possibilities...Coherence & Localization

Hypothesis 2 ation in 3 flavors
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