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Abstract A neutron transport model of LOS270 was built in The synthetic nToF spectra is then convolved with The inverse process is applied to experimental data.
A high-resolution neutron transport model has been developed MCNP6 to correct for neutron attenuation and an assumed 2-ns Gaussian burn-width and an  nToF spectrum is shifted in time to the expected arrival

1 PALINE b SUTISKE NEWERNTS RrOGUCEC frosm ivaghie scattering in the nToF spectrum. experimentally obtained Instrument Response time of a 2.45-MeV neutron.

experiments conducted at Sandia National Laboratories’ Z- , Data is fit with an exponentiallv convolved Gaussian
Machine. Results of these simulations show that neutron : Cross-section view of LOS270 MCNP geometry Function (IRF) [9-10]. . P Y ]
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of-flight (nToF) signal, which can lead to an overestimation of | e ﬂ detector at each location.
the average ion-temperature by as much as 500 eV for nominal O * ® Areal-density of the Be liner is inferred from the
MagLIF conditions at the 9.5m detector location. A family of S | l downscattered spectrum (not discussed here).

potential nToF signals at different source conditions were - - - e The appropriate model can then be compared to the
generated in MCNP and convolved with an instrument The reference MagLIF geometry is a typical 60-80 The convolved data is fit with an exponentially experimental data

response function and compared to experimental data. Using magnet coil configuration[2-8]. convolved Gaussian function.
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Source at stagnation conditions
Departure from ideal conditions can be seen in the Synthetic nToF spectra were produced at both the 9.5

three nToF signals measured on line-of-sight 270 and 11.5m nToF locations (Data shown for the 11.5m
(LOS270). One at 9.5m and two at 11.5m. location).
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This figure will be replaced with a plot ' B, i, kT-actual (keV)
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