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Abstract
A high-resolution neutron transport model has been developed
in MCNP to simulate neutrons produced from MagLIF
experiments conducted at Sandia National Laboratories' Z-
Machine. Results of these simulations show that neutron
interactions in the complex load hardware and bremsstrahlung
shielding directly in the line-of-sight broaden the neutron time-
of-flight (nToF) signal, which can lead to an overestimation of
the average ion-temperature by as much as 500 eV for nominal
MagLIF conditions at the 9.5m detector location. A family of
potential nToF signals at different source conditions were
generated in MCNP and convolved with an instrument
response function and compared to experimental data. Using
this technique, it is feasible to infer the apparent ion-
temperature, Be liner areal density and neutron yield from a
single measurement.

Under ideal conditions, time-of-flight is a direct
measurement of the neutron energy distribution from
which the apparent ion-temperature can be
inferred[1].

A neutron transport model of LOS270 was built in
MCNP6 to correct for neutron attenuation and
scattering in the nToF spectrum.
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The reference MagLIF geometry is a typical 60-80
magnet coil configuration[2-8].
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Departure from ideal conditions can be seen in the
three nToF signals measured on line-of-sight 270
(LOS270). One at 9.5m and two at 11.5m.
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This figure will be replaced with a plot
showing the primary dd peak from each of
the three detectors located on LOS270.
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Target

Blast shield with Roosevelt magnet (60-80)

configuration modified for ZBL cutout (Original

model by K. D. Hahn -2013)

As-fielded configuration on Shot# Z3296 (80-80)

(MagLIF Morphology 18b, 08-27-18)

Dave Ampleford, PI

rhe source parameters were varied to cover the
expected parameter space for a MagLIF implosion.
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Neutrons are produced from one

branch of the D-D nuclear reaction

D + D He + n(2. 45 MeV) + 3. 27 MeV

Neutron distribution varied for 1 - 3 keV

2ns Gaussian burn-width assumed

Source at stagnation conditions

Synthetic nToF spectra were produced at both the 9.5
and 11.5m nToF locations (Data shown for the 11.5m
location).
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kT is the dominate feature at t < 550
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The synthetic nToF spectra is then convolved with
an assumed 2-ns Gaussian burn-width and an
experimentally obtained Instrument Response
Function (IRF) [9-10].
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The convolved data is fit with an exponentially
convolved Gaussian function.
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= 526.0 +/- 0.1 ns

IRF is for detector NTF24D-
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The inverse process is applied to experimental data.
• nToF spectrum is shifted in time to the expected arrival

time of a 2.45-MeV neutron.
• Data is fit with an exponentially convolved Gaussian

over the same interval as the synthetic data
• kT is inferred from the correlation established for each

detector at each location.
• Areal-density of the Be liner is inferred from the

downscattered spectrum (not discussed here).
• The appropriate model can then be compared to the

experimental data.

• • •

-13-• Data

Fit
95% PI

Fit is for 9.5m location

Fit is for t < 500

600

500

0.-s 400

cu 300

-rEL

100

200

0

-100
420 440 460 480 500 520 540 560 400 450 500

Time (ns) Time (ns)

The average ion temperature measured with three

Two correlations for the apparent ion-temperature, kT
can be determined from the total full-width at half- 3

maximum (FWHM) and the Gaussian FWHM.
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detectors for four different shots agree within the
uncertainty of the formalism (+/- 300eV).
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Conclusions
Coupling synthetic data generated in MCNP with experimental
IRFs provides a way to bound the inferred average ion-
temperature in MagLIF implosions.
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