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• Motivation for Ultra-wide Bandgap AIGaN electronic
devices

• Conduction loss-based metrics for incumbent and
emerging devices in power conversion

• Early History with depletion-mode transistors

• Demonstration of enhancement-mode transistors

• Reliability Considerations for Al-rich AIGaN transistors

• Summary
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UWBG semiconductors for Power Electronics

Silicon

• 2.7 MVA

• 6 tons

• 10 m3

SiC

ok,

• 2.7 MVA

• 2 tons

• 6.5 m3

UWBG (EG > E G (GaN))

• 2.7 MVA

• <1 ton

• <1 m3

• Electrification of sensors, weapons and propulsion demand >100 kV, >1000 kA, or >100 MW
• Requires higher voltage, power density, and thermal margin than SiC or GaN provides
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Conduction Loss Figure of Merit for Lateral and Vertical Devices

Basis for FOM: Conduction Loss: Greater voltage requires
lower doping and longer drift region (double whammy)

Baliga FOM (Vertical) Lateral FOM

1

A EP-E3Ronfisp at. crit Ronfisp
qpilsE c2rit

Parameters and FOM values are different — Lateral and Vertical
devices are different

FOMs can be compared — they are measured
similarly
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FOM Critical Parameters and Al Mole Fraction (x) in AlxGal_xN
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Coltrin et al., JSST 6, 53114 (2017)
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Based on Hudgins et al., IEEE Trans. Power El. 18, 907 (2003)

Ternary alloy scattering considerably reduces the FOM for 0.1 < x < 0.9

Ec considerably increases the FOM for x > 0
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Other FOM Parameters and Al Mole Fraction (x) in AlxGa1,N

00 0.2 0.4 0.6 0.8

Al-Content (x)

1

These parameters have a lesser dependence on Al-content
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Figure of Merit Comparisons for Lateral and Vertical Devices

Basis for FOM: Conduction Loss: Greater voltage requires
lower doping and longer drift region (double whammy)

Baliga FOM (Vertical) Lateral FOM

1

EliE3rit   q[insEc2rit
Ronfisp 4 Ronfisp

µEc2 common f actor which increases with x &with EG

1
4 
EEcrit compares to qns

Common factor increases either FOM with EG

Extra factor increases BFOM(Ed more strongly than LFOM(EG)
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AlxGal_xN Lateral and Vertical Device FOM (Normalized to SiC)
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AlxGa 1_xN FOM

payoff is greatest

at high x (AIN)

FOM payoff

increases with

temperature

BUT ...

Challenges

increase

exponentially

with x, for both

lateral &

vertical devices
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500°C AlxGal_xN Lateral and Vertical Device FOM (Normalized to SiC)
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has good payoff

at all x for

500°C operation

BUT ...

Challenges

increase

exponentially

with T, for WBG

and UWBG

devices
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• Early History with depletion-mode transistors
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D-mode A10.45Ga0.55N/ A103Ga07N "45/30" H EMT
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fl

• Linear through the origin !AI

• due to —2.5 x 10-5 S2-cm2 Ohmic contacts

• Exceptional IDMAX/IDMIN ratio .101wl A OFF,1 of 8 x 108

• Very low gate leakage
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Temperature Dependence of "45/30" Transfer and Output
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Baca et al. JSSST 6, S3010 (2017).

= 2 V

8 10

-10 -8 -6 -4 -2
Gate Voltage (V)

• Drain current decreases monotonically with temperature

• Exceptionally low leakage current is invariant with temperature

• Subthreshold slope varies slightly with temperature

2
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Temperature Dependence of "45/30" !max Consistent with Mobility-
9011•1. '0 .1  •• 

1.5

;-4

LOO 250 300 350 400
Temperature (K)

Baca et al. JSSST 6, S3010 (2017).

450 500

• Imax, las-Vas slope, and (RSh)-1 all track with temperature — suggestive of
electron mobility as the common factor
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D-mode A10.85Ga0.15N/ A10.7Ga0.3N "85/70" H EMT
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Baca et al. JSSST 6, Q161 (2017).

8 10

• Very little hysteresis

• Difficulty of Ohmic contact formation
leads to offset voltage and limitation of
drain current potential (beyond mobility
concerns)
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Exceptional Leakage Characteristics over Temperature in D-mode
"85 70" HEMT
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Baca et al. JSSST 6, Q161 (2017).
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• Exceptional ratio loiloff ratio of 8 x 109 at -50°C

• Exceptionally low leakage current that increases with temperature and
E A = 0.55 eV

• Breakdown voltage exceeds 500 V and drain leakage current is
consistent with Frenkel-Poole conduction

600
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Modest /D (T) Decline Observed by Outside Researchers
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Tokuda et al., Appl. Phys. Exp. 3, 121003 (2010)
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Trend of Modest /D(T) decline extends to 500°C in "85/70" HEMT
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UF/Sandia Collaboration:
Carey et al., IEEE JEDS 7, 444 (2019).

• 10 exceeds 120 mA/mm at 25°C

• Retain excellent IDand at over 50

mA/mm when operated at 500°C

• Al-rich HEMT maintains excellent

On/Off ratio at 500°C and GaN

doesn't

• 1010 OFF extrapolation to 600-800°C

looks fine for in 85/70 HEMTs, but

untenable for AIGaN/GaN
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High Current Density D-mode HEMTs

65/40 D-mode MOS-HEMT
Hu et al. EDL 39, 1568 (2018)
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with very negative VTH, and 600 mA/mm fields with LSG = 0.5 ptm, LGD = 2.0 ptm
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• Demonstration of enhancement-mode transistors
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E-mode A107Ga03N using F-Plasma Treatment
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Sapphire Subst

Motivated by Cai et al., IEEE Trans. El. Dev. 53, 2223 (2006)

Au
NI 

D-mode HEMT gate stack

Au • F- ion

E-mode HEMT gate stack

COJZC977
VNA5814aQC

SiN

Gold

Ni Gate

AIGaN Barrier

AIGaN Channel

20 nm

F-plasma from reactive ion etch (through SiN): combination of AlGaN etch and
incorporation of E ions near the surface
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E-mode A107Ga03N using F-Plasma Treatment

10
2

10

0
2

E
E

— a .1 o-4

10
6

10
8

Klein
I A i 

114, 
1 4 'II /IA ni

et frippc. Phys. Lett.  1.1.4.1.V.I. tLV.L71

180% Over-Etch

- 360% Over-Etch

-8 -4 -2 0

VG (V)
2 4 6 -S

O) 53 TOO 1511 ZOO

MiliderThittness (N)

Claptbarrier AEC
VTH = (Pb ErE0

Barrie .R Etching

•

Final iiTH

Fluorine
Treatrnent

Remaining

thickness

Recess
Etchitig Starting

thickness

F-plasma from reactive ion etch (through SiN, then into AIGaN): combination of
AIGaN etch and incorporation of P ions near the surface
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MIS-free E-mode AIGaN using p-type gate
Douglas et al., J. Vac. Sci. Tech. B37, 021208 (2019)
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1— 
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Channel

Drain

p-AIGaN under gate replaces Schottky barrier with AIGaN Eg

(Larger Eg enables more positive Vth)

(Larger Eg enables larger positive VG swing)

(MIS-free eliminates possible dielectric-induced reliability degradation)
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E-mode p-30/45/30 with high current density

/-V of D-mode 45/30 AIGaN HEMT

80
Lsg = 4 ,um

70 Lg = 2 Pm
V = 2 V

60
Lgd = 4 ,um

50

V = 1

40

c n 30
cn

i/
R=on

t

40 Sl.mm

20
if/

If/ V = 0 V

10 /77 V = -1 V

< -1 V

-10
0 2 4 6

V
DS 

(V)

Klein et al., ECS JSSST 6 S3067 (2017).
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• Vth = V
• Little to no degradation of las max or Fion,sp for E-mode vs. D-mode AIGaN HEMT due to Mg or etch
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E-mode p-30/45/30 with excellent gate performance
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Douglas et al., J. Vac. Sci. Tech. B37, 021208 (2019)
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V
d
=10V

102 /„//off

I gs = 3 nA/mm at +8 V Vgs

-10 -5

• Small hysteresis (— 80 mV)

• Vanishingly small gate current

0
Vg (V)

5 10

ENERGY
IA
V L' 
.V

Igh?fr-4 Albert Baca - agbaca@sandia.gov



• Motivation for Ultra-wide Bandgap AIGaN electronic
devices

• Conduction loss-based metrics for incumbent and
emerging devices in power conversion

• Early History with depletion-mode transistors

• Demonstration of enhancement-mode transistors

• Reliability Considerations for Al-rich AIGaN transistors

• Summary
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Generalized Reliability Issues in III-N Transistors

• Contacts
• Ohmic, Schottky contact degradation
• Interface stability

• High Temperature Operating Life: On-state stress, self-heating,
hot electrons, capture emission effects

• High temperature reverse bias: off-state stress, high electric
field stress, Ea, few hot electrons

• Gate stress, forward bias: donor and acceptor-like barrier traps,
dielectric traps (for gate insulators)

• Gate stress, reverse bias: donor and acceptor-like barrier traps,
dielectric traps (for gate insulators), high electric field stress, Ecz
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Early Development Cycle Reliability Issues in III-N Transistors

• Suitability of Reliability studies early in a development cycle
• Can influence the development as one of the metrics
• There may not be customer requirements defined
• May not be suitable if the technology is rapidly changing

• Have you accounted for capture/emission effects?
• If not, then you can't distinguish between permanent and

reversible degradation
• Do you have a targeted question regarding a reliability or

degradation topic?
• If yes, then a targeted stress experiment may be

appropriate
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Reliability Issues in III-N Transistors 11

• Suitability of Reliability studies early in a development cycle
• Can influence the development as one of the metrics
• There may not be customer requirements defined
• May not be suitable if the technology is rapidly changing

• Have you accounted for capture/emission effects?
• If not, then you can't distinguish between permanent and

reversible degradation
• Do you have a targeted question regarding a reliability or

degradation topic?
• If yes, then a targeted stress experiment may be

appropriate

Is there value in an exploratory step-stress study?

AND ...

Can we learn something about Fluorine stability in Al-rich HEMTs?
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Exploratory Step-Stress: Is There a Most Severe Type of Stress?
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From AIGaN/GaN experience:
• Dominant Type I stress: Ez degradation may cause cracks in AlyGai_yN barrier
• Dominant Type II stress: numerous hot electron degradation
• Dominant Type III stress may distinguish between hot electron degradation and

other types of Ex degradation
• Dominant Type IV stress may highlight Ex degradation effects
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Multiple HEMTs Stressed with Types I, 11, Ill, IV Stress
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85/70 HEMTs
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Step-Stress Experiments:

• Tested to destruction

• 100 s time window

• Interrupted the stress

for electrical

characterization

• Identify interesting

bias points for

subsequent

experiments

• Hot electron stress can

be very severe

• Temporal character is

interesting

• Leakage current trend

gets interesting as you

approach destructive

voltage
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Stress Interruptions of 85/70 H E M Ts with Types I, 11, Ill, IV Stress
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Observations from these Step-Stress Experiments:
• /MAX decreases with V D stress
• Types III, IV stress are the apparently the worst

• Must account for reversible degradation

200
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Example of 85/70 HEMT Stress Interruptions with Type IV Stress

2

Type IV stress:

N
o
r
m
a
l
i
z
e
d
 V
a
l
u
e
 o
r
 O
ff
se
t 

1.5

0.5

  Subthreshold Shift

... 

\
,-N---\

Max Current

  On-resistance

.............. 

\— - Knee Voltage Shift

,"-
/. %,+1/4-1- ." 1 .01
• ,, 10'

, 
1

..., -----------------------— ,. 
— .fls* .....,,,,

'2-----c---.7-.7%"' 
- 1 - --n
r 

-------- 

---,

— 
--...n. --------------- --- -- ---------------- ,_.......-_-_- ------ -

0-

Increased
magnitude of VD
stress

-0.5
0 10 20 30 40 50 60

Gate Voltage During Stress (V)
70 80

Observations from 85/70 HEMTs with Type IV Step-Stress Experiments:

• //wAx decreases with VD stress, correlates with RON decrease

• Subthreshold shift increases with VD stress

• Knee voltage stable up to 30 V stress, then shifts negative
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Capture/Emission Effects Need Better Understanding

1 = I0

= 15 V

VD = 20 V

VD = 25 V

VD = 30 V

VD = 35 V

VD = 40 V

20 40 60 80 100
Stress Time (s)

Ate—(tItau)13

"Stretched" exponential, after Bisi et al.
IEEE Tr. Electr. Dev. 62, 3166 (2013)

• Data are symbols

• Lines fit to the stretched
exponential

• 100 s stress window from

step-stress experiments

• Fitted parameters are
dependent on electric field

• Observe both emission and
capture processes which

confound the experiment

• One solution is to run long

experiments

20% changes within 20 s!

Need to let the data
"settle"

ALL CONCLUSIONS ARE TENTATIVE until the capture and emission effects

are better understood
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Can We Learn Something about Flourine Stability in Al-rich HEMTs?

b fr

• F-treatment in AIGaN/GaN HEMTs produces e-mode transistors, yet questions

about its stability/reliability persist, Cai et al., IEEE Trans. El. Dev. 53, 2223 (2006)

• If F- is mobile, VTH can shift considerably

• F- ion stability is interesting in Al-rich transistors due to greater negative enthalpy

of formation for AIF3 (-1504* kJ/mol) compared to GaF3 (-1163* kJ/mol)

*Inorganic Compounds: Physical and Thermochemical Data

http://www2.ucdsb.on.ca/tiss/stretton/database/inorganic thermo.htm
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Drain current evolution for 3-types of e-mode HEMT stress experiments
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Baca et al., IRPS (2019)

• Drain current transients evident within the 100 s stress windows - reversible
• Destructive voltage similar for different VG stress conditions

• Hot electrons: minor role in degradation?
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Evolution of e-mode 25°C output transfer and characteristics (at
• •

I - • •

—I
D 
pre-stress

—I
D 
post 70 V stress

—Drain Current Pre-Stress
—Drain Current Post-Stress

V D = 10 V

b)

• d-mode: Stress @ VG=-10V, step VD
• Slight RON effect
• Larger VTH effect: transient?

o

4 -2

—Drain Current Pre-Stress

—Drain Current Post-Stress

V D = 10 V

0 1
Drain iful
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Baca et al., IRPS (2019)

• e-mode: Stress @ VG=-2V, step VD
• Negligible RON effect
• Considerable VTH effect — not fully

understood
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VTH Trends with VD Stress
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Baca et al., IRPS (2019)
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• VTH VD trends considerable but

transient

Fixed bias stress (VD = 50 V)
190°C

e-mode

V
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d-mode

2
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4

• Constant VD stress = 50 V: initial VTH shifts

• Stabilize after 0.25 h

Ta keaway:

• VTH shifts affect both d- and e-mode HEMTs (common factor) undergoing reverse bias

VG stress; stabilizes in 0.3 h

• Evidence that F- ions are stable in A10.85Ga0.15N
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• FOM analysis favors AIGaN, expecially at high

temperature

• Demonstrated 500°C operation of an 85/70 HEMT with

16x improvement in FOM over GaN

• Current density exceeds 500 mA/mm with aggressive

dimensions and improvements to Ohmic contacts

• Demonstrated Al-rich enhancement-mode HEMT with F-

plasma treatment

• Demonstrated AIGaN-channel enhancement-mode
HEMT with p+ gate (45/30) HEMT

• Used step-stress experiments to narrow the focus of

targeted reliability studies

• Showed evidence of F-Stability in 85/70 e-mode HEMT
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