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* Motivation for Ultra-wide Bandgap AlGaN electronic
devices

* Conduction loss-based metrics for incumbent and
emerging devices in power conversion

e Early History with depletion-mode transistors

 Demonstration of enhancement-mode transistors

* Reliability Considerations for Al-rich AlGaN transistors

* Summary
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UWBG semiconductors for Power Electronics

Silicon SiC UWBG (E; > E; (GaN))

n/

c 2.7MVA

J <1 ton
0 <1m3

* Electrification of sensors, weapons and propulsion demand >100 kV, >1000 kA, or >100 MW
e Requires higher voltage, power density, and thermal margin than SiC or GaN provides
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. Conduction Loss Figure of Merit for Lateral and Vertical Devices

Basis for FOM: Conduction Loss: Greater voltage requires
lower doping and longer drift region (double whammy)

Baliga FOM (Vertical) Lateral FOM

Vi

r 2

— _EHEcrit R = qungE,,.;
on,sp

Parameters and FOM values are different — Lateral and Vertical
devices are different

FOMs can be compared — they are measured
similarly
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FOM Critical Parameters and Al Mole Fraction (x) in Al,Ga,,N
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Based on Hudgins et al., IEEE Trans. Power El. 18, 907 (2003)
Coltrin et al., JSST 6, S3114 (2017)

Ternary alloy scattering considerably reduces the FOM for 0.1 < x< 0.9

E. considerably increases the FOM for x > 0
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. Other FOM Parameters and Al Mole Fraction (x) in Al Ga, N

g Ng (x1012 cm2)

0 02 04 06 08 1
Al-Content (x)

These parameters have a lesser dependence on Al-content
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Figure of Merit Comparisons for Lateral and Vertical Devices

Basis for FOM: Conduction Loss: Greater voltage requires
lower doping and longer drift region (double whammy)

Baliga FOM (Vertical) Lateral FOM

ve. 1 Vs ,
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WE:* common factor which increases with x & with EG

1
2 eE i compares to gng

Common factor increases either FOM with E_

Extra factor increases BFOM(E;) more strongly than LFOM(E )
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FOM
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GaN HEMT
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Al.Ga, N Lateral and Vertical Device FOM (Normalized to SiC)

Al Ga, N FOM
payoff is greatest
at high x (AIN)

FOM payoff
increases with
temperature

BUT ...

Challenges
increase
exponentially
with x, for both
lateral &
vertical devices
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. 500°C Al Ga, ,N Lateral and Vertical Device FOM (Normalized to SiC)

FOM

- — Lat ALGa,,N
— Vert Al,Ga, N
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500°C

GaN HEMT |
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Al-Content (x)

Al Ga,, N FOM
has good payoff
at all x for
500°C operation

BUT ...

Challenges
increase
exponentially
with T, for WBG
and UWBG
devices
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e Early History with depletion-mode transistors
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D-mode Al, ,<Ga, <N/ Aly ;Ga, N “45/30” HEMT

4.15 pm Aly 55Gag, ;0N UID

1.6 pm AlN

Sapphire substrate

* Linear through the origin I-V

e dueto ~2.5 x 10° (2-cm? Ohmic contacts
* Exceptional 1,5/ 1pnun ratio (Ion/1ore) of 8 x 10%

* Very low gate leakage

Drain, Gate Current (mA/mm)
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. Temperature Dependence of “45/30” Transfer and Output

Characteristics
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Baca et al. JSSST 6, S3010 (2017).
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* Drain current decreases monotonically with temperature
* Exceptionally low leakage current is invariant with temperature
e Subthreshold slope varies slightly with temperature
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.Temperature Dependence of “45/30” Imax Consistent with Mobility-

Dominated Transport
1.5

"'Ins' Vns slope

I los-Vps Slope, (R, ) (Normalized)

900 250 300 350 400 450 500
Temperature (K)

Baca et al. JSSST 6, S3010 (2017).

* I..0 IpsVps slope, and (R, ) all track with temperature — suggestive of
electron mobility as the common factor
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D-mode Al 5:Ga, ;:N/ Al, ,Ga, ;N “85/70” HEMT

4 pm
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Baca et al. JSSST 6, Q161 (2017).

Albert Baca - agbaca@sandia.gov



. Exceptional Leakage Characteristics over Temperature in D-mode

“85/70” HEMT
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* Exceptional ratio I/l ratio of 8 x 10° at -50°C

* Exceptionally low leakage current that increases with temperature and
E,=0.55eV

* Breakdown voltage exceeds 500 V and drain leakage current is
consistent with Frenkel-Poole conduction
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. Modest /I, (T) Decline Observed by Outside Researchers
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. Trend of Modest /,(T) decline extends to 500°C in “85/70” HEMT

I,(mA/mm)
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UF/Sandia Collaboration:
Carey et al., IEEE JEDS 7, 444 (2019).

* I, exceeds 120 mA/mm at 25°C

* Retain excellent I, and at over 50
mA/mm when operated at 500°C

* Al-rich HEMT maintains excellent
On/Off ratio at 500°C and GaN
doesn’t

* I,n/1 o €xtrapolation to 600-800°C

untenable for AIGaN/GaN
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High Current Density D-mode HEMTs

65/40 D-mode MOS-HEMT 85/70 D-mode HEMT, 90 nm gates
Hu et al. EDL 39, 1568 (2018)
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e Demonstration of enhancement-mode transistors
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E-mode Al,,Ga, ;N using F-Plasma Treatment

~ 4um w}‘ 4 pm ‘ Motivated by Cai et al., IEEE Trans. El. Dev. 53, 2223 (2006)
| | I
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1.6 um AIN D-mode HEMT gate stack E-mode HEMT gate stack
Sapphire Substrate

Ni Gate

AlGaN Barrier

AlGaN Channel

20 nm

F-plasma from reactive ion etch (through SiN): combination of AlGaN etch and
incorporation of F ions near the surface
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E-mode Al,,Ga, ;N using F-Plasma Treatment

Klein et al., Appl. Phys. Lett. 114, 112104 (2019)
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F-plasma from reactive ion etch (through SiN, then into AlGaN): combination of
AlGaN etch and incorporation of F ions near the surface
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MIS-free E-mode AlGaN using p-type gate

Douglas et al., J. Vac. Sci. Tech. B37, 021208 (2019) p-AlGaN under gate Schottky gate

Gate

(E,=4.2 eV _
Source LA ICEIRA Drain Gate

Source Drain

Alg 45Gag 55N
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3 | SERe Channel
i

Aly3Ga, ;N

OI I I50I I 100 150 200 I I250
Depth (nm)
p-AlGaN under gate replaces Schottky barrier with AlGaN E,
(Larger E, enables more positive V,,)
(Larger E, enables larger positive V; swing)
(MIS-free eliminates possible dielectric-induced reliability degradation)
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IDS (mA/mm)

E-mode p-30/45/30 with high current density

I-V of D-mode 45/30 AlGaN HEMT |-V of E-mode 30/45/30 AlIGaN HEMT
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Little to no degradation of /.., OF R,, ., for E-mode vs. D-mode AlGaN HEMT due to Mg or etch
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. E-mode p-30/45/30 with excellent gate performance

Douglas et al., J. Vac. Sci. Tech. B37, 021208 (2019)

E-mode 30/45/30 AlIGaN HEMT
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e Small hysteresis (~ 80 mV)
* Vanishingly small gate current
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B Reliability

* Reliability Considerations for Al-rich AlGaN transistors
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Generalized Reliability Issues in IlI-N Transistors

* Contacts
* Ohmic, Schottky contact degradation
* Interface stability
* High Temperature Operating Life: On-state stress, self-heating,
hot electrons, capture emission effects
* High temperature reverse bias: off-state stress, high electric
field stress, E.,, few hot electrons
* @Gate stress, forward bias: donor and acceptor-like barrier traps,
dielectric traps (for gate insulators)
* @Gate stress, reverse bias: donor and acceptor-like barrier traps,
dielectric traps (for gate insulators), high electric field stress, E_,

Albert Baca - agbaca@sandia.gov



. Early Development Cycle Reliability Issues in IlI-N Transistors

 Suitability of Reliability studies early in a development cycle
e Can influence the development as one of the metrics
* There may not be customer requirements defined
* May not be suitable if the technology is rapidly changing
* Have you accounted for capture/emission effects?
* If not, then you can’t distinguish between permanent and
reversible degradation
* Do you have a targeted question regarding a reliability or
degradation topic?
* If yes, then a targeted stress experiment may be
appropriate

Albert Baca - agbaca@sandia.gov
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Reliability Issues in 1lI-N Transistors

e Suitability of Reliability studies early in a development cycle
e Can influence the development as one of the metrics
* There may not be customer requirements defined
* May not be suitable if the technology is rapidly changing
* Have you accounted for capture/emission effects?
* If not, then you can’t distinguish between permanent and
reversible degradation
* Do you have a targeted question regarding a reliability or
degradation topic?
* If yes, then a targeted stress experiment may be
appropriate

Is there value in an exploratory step-stress study?

AND ...

Can we learn something about Fluorine stability in Al-rich HEMTs?
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Exploratory Step-Stress: Is There a Most Severe Type of Stress?

0 100 -
20 Type Istress: | _ g Type Il stress: |
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From AlGaN/GaN experience:

* Dominant Type | stress: £, degradation may cause cracks in Al,Ga, N barrier

 Dominant Type Il stress: numerous hot electron degradation

* Dominant Type lll stress may distinguish between hot electron degradation and
other types of E, degradation

* Dominant Type IV stress may highlight E, degradation effects
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. Multiple HEMTs Stressed with Types |, II, Ill, IV Stress

Gate or Drain Voltage During Stress

10> 25 50 75 100 125 150

a
= A -

T T

Step-Stress Experiments:

— Type | Stress

— Type Il Stress
102 | | —— Typell Stress
Type IV Stress

N

-
o
A

Gate or Drain Current (mA)

-
o

10° |
m 85/70 HEMTs

0 500 1000 1500 2000 2500 3000
Stress Time (s)

35

* Tested to destruction
e 100 s time window
* Interrupted the stress

for electrical
characterization
Identify interesting
bias points for
subsequent
experiments

| * Hot electron stress can

be very severe

* Temporal character is

interesting

* Leakage current trend

gets interesting as you
approach destructive
voltage
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. Stress Interruptions of 85/70 HEMTs with Types I, II, IlI, IV Stress

80 . , ' ' 1.8
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Observations from these Step-Stress Experiments:

* |,y decreases with V stress

e Types lll, IV stress are the apparently the worst
* Must account for reversible degradation
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. Example of 85/70 HEMT Stress Interruptions with Type IV Stress
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Gate Voltage During Stress (V)
Observations from 85/70 HEMTs with Type IV Step-Stress Experiments:
* |y decreases with V, stress, correlates with R, decrease
* Subthreshold shift increases with V, stress
* Knee voltage stable up to 30 V stress, then shifts negative
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. Capture/Emission Effects Need Better Understanding

7 ‘ ' ' ' ' * Data are symbols
* Lines fit to the stretched
6.5 exponential

e 100 s stress window from
step-stress experiments

* Fitted parameters are
dependent on electric field

e Observe both emission and
capture processes which
confound the experiment

* One solution is to run long

(=2)

.
(S
THy g O
S5 . Se

Drain Current (mA)
(3]
N

4.5 experiments
L L L ! i o . . I
4 20 40 60 30 100 20% changes within 20 s!
St Ti
_(t/taw)B ress Time (s) Need to let the data
I'=1, + z Aje “settle”

“Stretched” exponential, after Bisi et al.
IEEE Tr. Electr. Dev. 62, 3166 (2013)

ALL CONCLUSIONS ARE TENTATIVE until the capture and emission effects
are better understood
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. Can We Learn Something about Flourine Stability in Al-rich HEMTs?

Al-rich AlGaN barrier Al-rich AlGaN barrier

d-mode HEMT gate stack e-mode HEMT gate stack

* F-treatment in AlIGaN/GaN HEMTs produces e-mode transistors, yet questions
about its stability/reliability persist, Cai et al., IEEE Trans. El. Dev. 53, 2223 (2006)
* If F is mobile, V;, can shift considerably

* F ion stability is interesting in Al-rich transistors due to greater negative enthalpy
of formation for AlF; (-1504* kJ/mol) compared to GaF; (-1163* kJ/mol)

*Inorganic Compounds: Physical and Thermochemical Data
http://www2.ucdsb.on.ca/tiss/stretton/database/inorganic_thermo.htm
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. Drain current evolution for 3-types of e-mode HEMT stress experiments
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e Drain current transients evident within the 100 s stress windows - reversible
* Destructive voltage similar for different Vg stress conditions
* Hot electrons: minor role in degradation?
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. Evolution of e-mode 25°C output transfer and characteristics (at

)
E

d-mode e-mode
a0 |18
z «
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% 20 4 ] _ID pre-stress
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* d-mode: Stress @ V;=-10V, step V,, * e-mode: Stress @ V;=-2V, step V,,
* Slight R, effect * Negligible R, effect
* Larger V;, effect: transient? * Considerable V;, effect — not fully
understood
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V;,, Trends with V, Stress

2 2 T T
. Fixed bias stress (V, = 50 V)
25°C al 190°C
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Step-stress experiment
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Drain Stress Voltage (V) Stress Time (h)
Baca et al., IRPS (2019)

* V5, - V,trends considerable but
transient

* Constant V stress = 50 V: initial V, shifts
* Stabilize after 0.25 h

Takeaway:
* V;, shifts affect both d- and e-mode HEMTs (common factor) undergoing reverse bias

V; stress; stabilizes in 0.3 h
* Evidence that Fions are stable in Al; 3:Ga, ;N
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 FOM analysis favors AlGaN, expecially at high
temperature

 Demonstrated 500°C operation of an 85/70 HEMT with
16x improvement in FOM over GaN

* Current density exceeds 500 mA/mm with aggressive
dimensions and improvements to Ohmic contacts

 Demonstrated Al-rich enhancement-mode HEMT with F-
plasma treatment

 Demonstrated AlGaN-channel enhancement-mode
HEMT with p* gate (45/30) HEMT

e Used step-stress experiments to narrow the focus of
targeted reliability studies

e Showed evidence of F-Stability in 85/70 e-mode HEMT
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