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Sandia’s History is Traced to the Manhattan Project
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4 | Sandia has Facilities Across the Nation

Activity locations

* Kauai, Hawaii

Pilot Plant,
Carlsbad, New Mexico

* Pantex Plant,
Amarillo, Texas

* Tonopah, Nevada

Main sites
* Albuquerque, New Mexico

* Livermore, California




5 I Sandia’s Budget Covers a Broad Range of Work
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6 I Sandia’s Workforce is Growing

Staff has grown by over 3,800 since 2009 to meet all mission needs
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Stochastic Transmission and Generation Planning

* Developed algorithms and tools for stochastic
transmission and generation planning

* Minimize weighted sum of expected cost and
CVaR

* Case study: WECC 240 bus system (2013
planning study)

* Changes in generation investments
per state w.r.t. risk-neutral case

* Risk aversion leads to:

* Increases in generation
investments in AB, MT, AZ, and
CcO

* Reductions in generation
investments in BC, OR, NV, and
UT

* No changes in CA, WA, and
WY

* => Ambiguous effect
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8 I Modeling and Optimization of Electric Grid Resilience

Project Objective: To develop scalable optimization models for power grid
resiliency at the transmission level, with high-fidelity models, that 1s ultimately
deployable for experimental purposes

* Sandia developed a framework for rigorous quantification of energy system
resilience
* This framework enables decision making to obtain demonstrable resilience

{\Reduced Expected Financial Consequence

Reduced Risk

improvements

[
>

= Resulting resilience
metrics are probabilistic

n =  The framework is flexible:

= Can handle different
types of threats

Probability of Consequences
[S] Given Threat X

[
>
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9 I Modeling and Optimization of Electric Grid Resilience

Two-Stage Stochastic Resiliency Model

AT

Decide grid
components to
harden

e Can harden lines,
generators, and
buses within a
budget

« Each component
has an
investment cost

« Unless they are
hardened, some
components are
rendered
inoperable for
some duration

Recovery plan

X,

« Given the state
of the network
after the
hurricane, decide
grid operations
across time
horizon,
minimizing load
shed

e Unit commitment
and transmission
switching
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10 I Co-Optimization of Resilience and Reliability

e Utilities are incentivized to be reliable but not resilient

* Utilities are often incentivized to be more reliable (improve their SAIDI and SAIFI metrics)

* Some utilities have performance based regulation (PBR)

* Large scale events (severe winter storms, hurricanes, etc.) are removed from the SAIDI and

SATFI metrics

* Less incentive to invest in resiliency

* Sandia is developing optimization techniques to

Co-optimize resilience and reliability (current

AGM proiject)
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Resilience Metrics

* Resilience metrics and optimizing for resilience/reliability are closely

related

* Sandia has extensive experience developing resilience metrics
* Sandia’s JP Watson co-leads the NAERM Threats, Economics and

Metrics thrust

SANDIA REPORT
SAND2014-18019
Unlimited Release
September 2014

Conceptual Framework for Developing
Resilience Metrics for the Electricity, Oil,
and Gas Sectors in the United States

Jean-Paul Watson, Ross Guttromson, Cesar Silva-Monroy, Robert Jeffers, Katherine
Jones, James Ellison, Charles Rath, Jared Gearhart, Dean Jones, Tom Corbet, Charles
Hanley, La Tonya Walker

Prepared by
Sandia National Laboratories
Albuguerque. New Mexico 7185 and Livermore, Calfornia 84550

Sandia National Laboratories is a mutt-program laboratory managed and operated by Sandia Corporation.
2 wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's
National Nuclear Security Administration under contract DE-ACD4-4;

Approved for public release; further dissemination uniimited.

@ Sandia National Laboratories

SANDIA REPORT
SAND2017-1493

Unlimited Release

Printed February 2017

Resilience Metrics for the Electric Power
System: A Performance-Based
Approach

Eric Vugrin, Anya Castillo, Cesar Silva-Monroy

Prepaved by
Sandia Nanu\al Laboratories
Albuquergue, New Mexico 87185 and Livermore, California 84550

Sandia Naional Laboratries i  mulnissiontaboratury managed and operated by Sandia Corporain,
2 wholly owned subsidiary of Lockheed Martin Corporation. S. Department of Energy's
National Nuclear Security Administration under contract DE- Rebr s

Approved for public release; further dissemination unlimited

@ Sandia National Laboratories




12 I Small Signal Stability

Sandia has extensive experience with small signal stability

> DOE/BPA/Sandia/Montana Tech wide area damping control project

> Power system dynamic modeling and simulation (e.g,, PST, PSLE, PSSE)

° Small signal stability analysis — Prony, ERA, etc.

> Controller design — Optimal Fixed Structure Control (OFSC),
decentralized control, network-enabled feedback control, design for

various actuators

° Impact of high renewable penetrations

° Mode visualization

° Supervisory controller design
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Frequency Estimation

Project goal: develop frequency estimation algorithms that are robust to waveform
distortions to enable synthetic inertia
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Shift

“Key research question:
For a corrupted (distorted, noisy)
waveform, what is frequency?

Figure from 7,200 MW Fault Induced Solar Photovoltaic
Resource Interruption Disturbance Report
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14 I Machine Learning to Improve Distribution System Models

* The distribution system has been built over many
decades, historically recorded with paper schematics
for mstallatlons upgrades, and maintenance.

* Distribution System Models

* Are based on manual data entry that is prone to error
and often out of date

* Contain additional complexity because they are multi-
phase unbalanced with single-phase customers. Cannot
use symmetrical component single-line models from
transmission system modeling

* Sources of Error
¢ Unlogged or erroneous maintenance reports
* Information not initially recorded in the model

* Recent additions of Advanced Metering
Infrastructure (AMI), or smart meters, provide
measurements of each customer’s power
consumption, and possibly other quantities, such as
voltage, that provide new insights and levels of
accuracy 1n distribution system modeling

* Distribution modehng errors in aggregate impact
the fidelity of transmission models
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15 I Phase ldentification Results

* Algorithm predicts the phase for each
customer (generally confirming the utility
model)

*Example of the algorithm detecting an error in
the model and predicting the correct phase (as
verified in StreetView
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SECURE (Science and Engineering of Cybersecurity by

17 1 Uncertainty quantification and Rigorous Experimentation) LDRD by

Sandia’s SECURE LDRD is developing algorithms and tools that enable a scientific

community of practice to rigorously quantify security

Cyber experimentation is essential for securing cyber systems
> collective behavior 1s hard to predict

° experimenting on a live system is not an option

Computational experimentation 1s a powerful tool

° But lack of rigor limits adoption for high-consequence decisions

SECURE integrates cyber Emulytics, Uncertainty Quantification and Optimization
methods to quantify and mitigate cyber risks

Attack Budget of “1”:
= RTU-4 Compromised I

= Total Panhandle [.oad Shed: 237.97 |
MW (75%)

= Voltage Security Violations

*Derived from synthetic data with no relation to actual grid: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/
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18 I Packetized Delivery of Energy LDRD

Fixed-schedule delivery scheme Flexible-time delivery scheme

* The grid operator will specify the size and the * The customers can request an immediate delivery of
delivery time of each packet on daily basis. energy packets.

* This decision is bas‘?d on an optimization to * This on-demand delivery of energy can be implemented
minimize a cost function under the system’s

: using explicit routing schemes developed for internet
constraints.

traffic engineering.
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Source 1

* Advantage:

~ L[ Pulse Pulse Pulse * Increase power density
Load 1 Load 2 Load 3 . oy .
i x * Prioritization of load i
. : I
Source 2 * Goal: instead of constrained AC or DC |
voltage, use an asynchronous broadband
Research Objectives power and communication system.
* Determine optimal energy packet protocols.

* Converter controls & H/W protocol implement
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Signal-Based Fast Tripping Protection Schemes for Electric Power
System Resilience LDRD

Goals: improve grid resilience by developing new signal-based protection schemes
that quickly detect the fault locally within 0.02 seconds without communication.
Plan to investigate signal-based protection methods such as wavelet transformation,
power line carrier, spectrum impedance testing, and travelling wave.

Hypothesis: high-frequency measurement can be combined with signal-based
methods to quickly detect the fault locally within 0.02 seconds without
communication.

Conventional Protection Equipment
Detects Current Increase (40ms)
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REDLY (Resilience Enhancements Through Deep Learning Yields) =
LDRD L

Goals: To develop scalable methods for system operators to protect the grid against

physical damage and interrupted service caused by cyber attacks through integration of
physics-constrained, robust machine learning (ML) and optimization (OPT) methods to
deliver on both (1) situational awareness and (2) operate-through capabilities specifically

for N-k contingencies.

Hypothesis: by integrating ML and OPT, the methods require less data for training, and
are more scalable and tractable for solving than general purpose ML algorithms (like
AlphaGo and AlphaZero).

Experimental Design

SCEPTRE . ML OPT
E Deep Learning Neural N-k Classes
® — - Network and
. T Nomograms
In-Sample N-k__| State Estimation Physics 9Iassnfncatlon Classification Decisions on:
Contingencies o Data (x) Indicators Data (y) Power Elow (1) Situational Awareness .
e Constraints (2) Operate-Through Operations
Robustness to
Uncertainty Decision
Variables

Out-of-Sample
N-k Contingencies




21 I Student Intern Opportunities

Sandia has two types of student intern opportunities
° Year-round student intern

o Summer student intern

How to search for grid-related student intern positions:
° Navigate to: http://www.sandia.gov/careers/

° Click on “View all jobs”

° Search for the department of interest:

> 08811 Energy Storage Technologies and Systems
> 08812 Renewable and Distributed Systems Integration
> 08813 Electric Power Systems Research

° Screen by job type (e.g., summer student intern)

Areas of expertise that we are looking for
> Optimization (production cost modeling, transmission planning, resilience modeling, stochastic
optimization)
> Control theory (transient stability, optimal control, distributed control)
° Electric Power system protection
> Distribution system modeling, microgrid design
° Machine learning applied to power systems (especially with respect to protection)

> Working towards a Ph.D. in electrical engineering or related field
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