

Market Evaluation of Energy Storage Systems Incorporating Technology-specific Nonlinear Models

PRESENTED BY

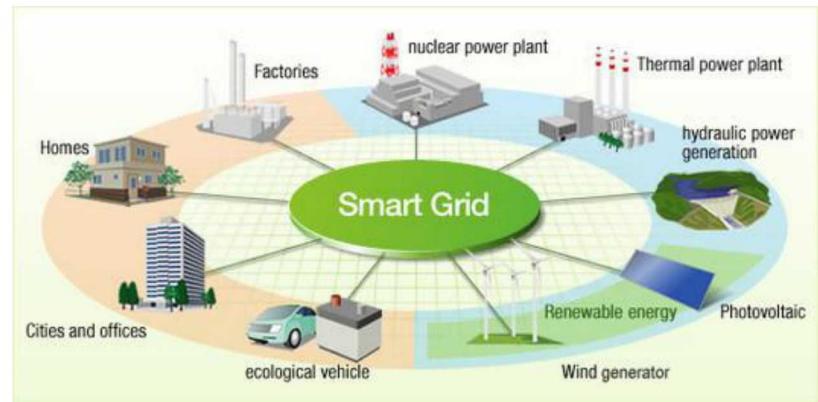
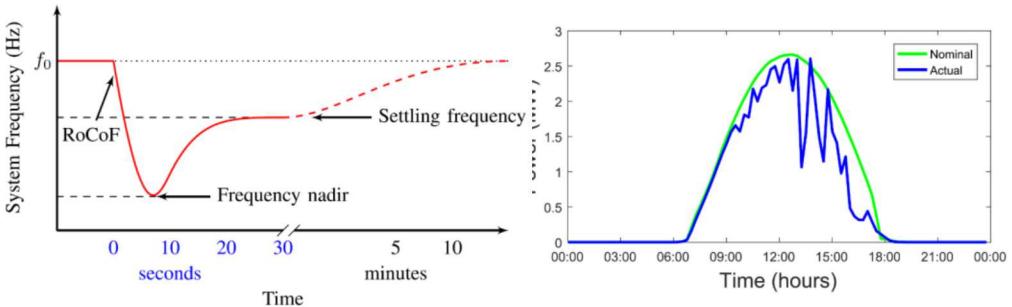
Tu Nguyen, PhD.

October 2019 – INFORMS Annual Meeting

Coauthors: David A. Conn, Raymond H. Burns, Babu P. Chalamala

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

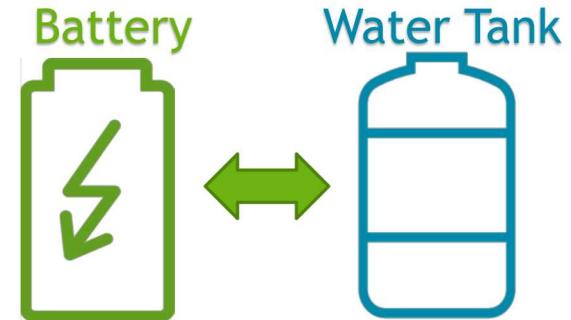
Outline

- Energy storage applications.
- Energy flow constant-efficiency model.
- Energy flow nonlinear models: Lead-acid/Li-ion battery, Vanadium Redox Flow Battery.
- Evaluation of energy storage for markets.
- Dynamic programming approach.
- Case studies.

Energy Storage Applications

- **Power applications**
 - Frequency regulation
 - Voltage support
 - Small signal stability
 - Frequency droop
 - Renewable capacity firming
- **Energy applications**
 - Arbitrage
 - Renewable energy time shift
 - Customer demand charge reduction
 - Transmission and distribution upgrade deferral

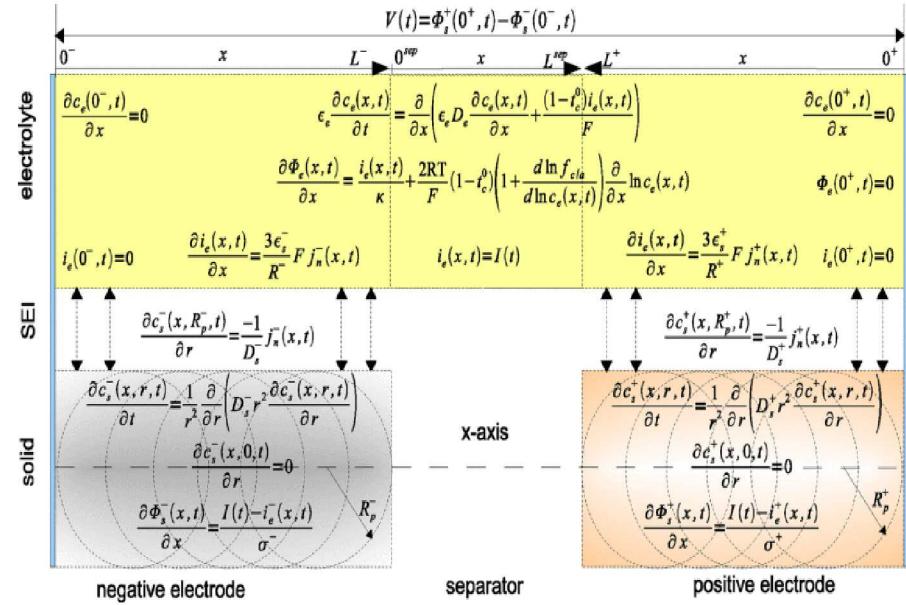


Energy Flow Constant-efficiency Model

- A generic constant-efficiency energy flow model is commonly used:

$$S_i = \eta_s S_{i-1} + \eta_c P_i^c \tau - \frac{P_i^d \tau}{\eta_d}$$

- **Technical Challenges:**


- Modeling charge/discharge efficiencies as functions of operating states (SOC, Temp., Input/Output Power).

$$S_i = \eta_s S_{i-1} + \underbrace{f^c(P_i^c, S_{i-1})}_{\text{Total charged power}} \tau - \underbrace{f^d(P_i^d, S_{i-1})}_{\text{Total discharged power}} \tau$$

- Solving optimization problems incorporating those models.

Energy Flow Nonlinear Model

- The currently available technology-specific nonlinear models of energy storage only focus on the nonlinear fast dynamics
- These models use a set of partial differential equations (PDE) to precisely describe battery electrochemical processes.
- Therefore, they are not suitable for techno-economic analyses that examine long time periods (minutes to hours) given minimal knowledge of battery electrochemistry.

Lithium ion intercalation battery model [1]

[1] R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic, "Electrochemical model based observer design for a lithiumion battery," IEEE Transactions on Control Systems Technology, vol. 21,no. 2, pp. 289–301, March 2013.

Energy Flow Nonlinear Model - VRFB

- The power loss of a VRFB includes two components: power for pumping the electrolytes and stack loss power [1].

- During discharge:** $f^d = \frac{P^{\text{stackd}}}{\eta_d}$

$$P^{\text{stackd}} = a_p^d P^d / \eta_p + b_p^d S (S - \bar{S}) + c_p^d$$

$$\eta_d = \frac{a_v^d P^d / \eta_p + b_v^d S + c_v^d}{a_v^o S + b_v^o}$$

- During charge:** $f^c = \eta_c P^{\text{stackc}}$

$$P^{\text{stackc}} = (a_p^c S + b_p^c) \eta_p P^c + c_p^c S + d_p^c$$

$$\eta_c = \frac{a_v^o S + b_v^o}{(a_v^c S + b_v^c) \eta_p P^c + c_v^c S + d_v^c}$$

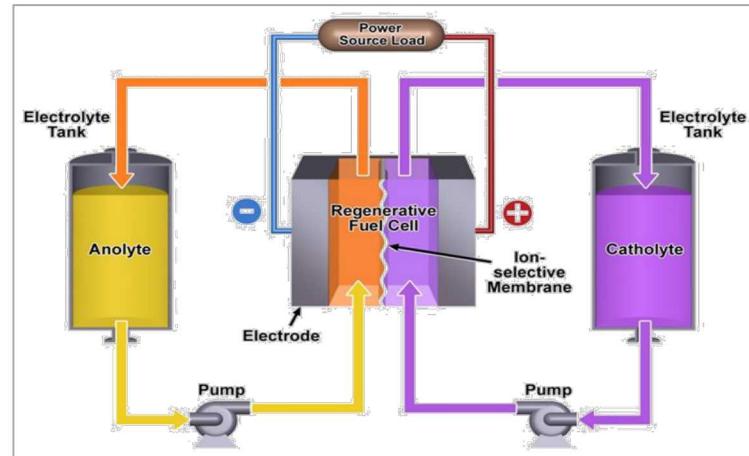
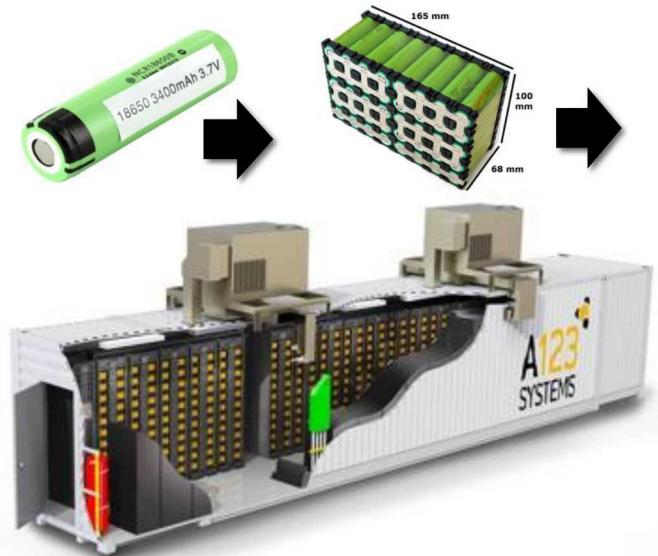


Table 1: VRFB Model Coefficients

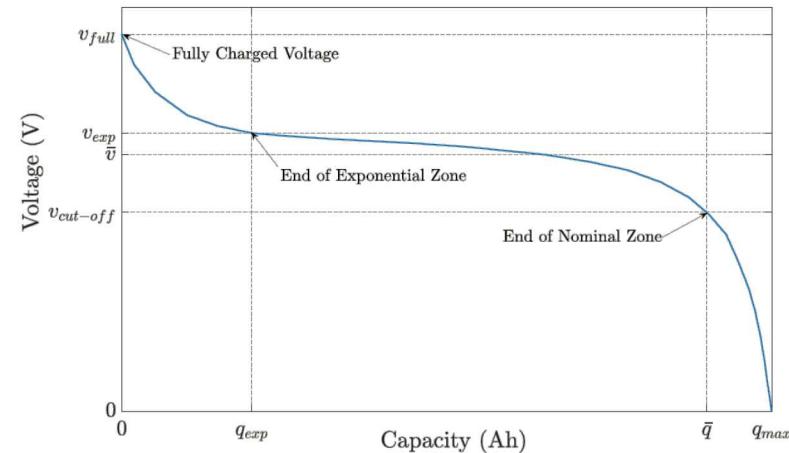
$a_v^o = \frac{0.236}{S}$	$b_v^o = 0.9989$	-	-
$a_v^d = \frac{-0.2833}{\bar{P}}$	$b_v^d = \frac{0.1325}{\bar{S}}$	$c_v^d = 0.9861$	-
$a_p^d = 1.0334$	$b_p^d = \frac{0.3454\bar{P}}{\bar{S}^2}$	$c_p^d = 0.1192\bar{P}$	-
$a_v^c = \frac{0.1974}{\bar{P}S}$	$b_v^c = \frac{0.1617}{\bar{P}}$	$c_v^c = \frac{0.1421}{\bar{S}}$	$d_v^c = 0.9748$
$a_p^c = \frac{-0.128}{S}$	$b_p^c = 1.05$	$c_p^c = \frac{0.038\bar{P}}{S}$	$c_p^c = -0.118\bar{P}$

Energy Flow Nonlinear Model – Li-ion/Lead-acid

- The power losses during charging or discharging Lead-acid and Li-ion batteries are mainly caused by the heat loss due to ohmic and polarization effects.
- During discharge:** $f^d = P^d / \eta_p + P^{ld}$


$$P^{ld} = 10^{-6} n \left[\left(r + \frac{k\bar{s}}{s} \right) i_{cell}^2 + \frac{k\bar{q}(\bar{s} - s)}{s} i_{cell} \right]$$

$$P^{ld} \approx \frac{\bar{q}}{\bar{v}\bar{S}} \left[\left(r + \frac{k\bar{S}}{S} \right) \left(\frac{P^d}{\eta_p} \right)^2 + \frac{k\bar{S}(\bar{S} - S)}{S} \frac{P^d}{\eta_p} \right]$$


- During charge:** $f^c = \eta_p P^c - P^{lc}$

$$P^{lc} = 10^{-6} n \left[\left(r + \frac{k\bar{s}}{\bar{s} - s} \right) i_{cell}^2 + \frac{k\bar{q}(\bar{s} - s)}{s} i_{cell} \right]$$

$$P^{lc} \approx \frac{\bar{q}}{\bar{v}\bar{S}} \left[\left(r + \frac{k\bar{S}}{\bar{S} - S} \right) (\eta_p P^c)^2 + \frac{k\bar{S}(\bar{S} - S)}{S} \eta_p P^c \right]$$

Discharge Characteristic at 1C

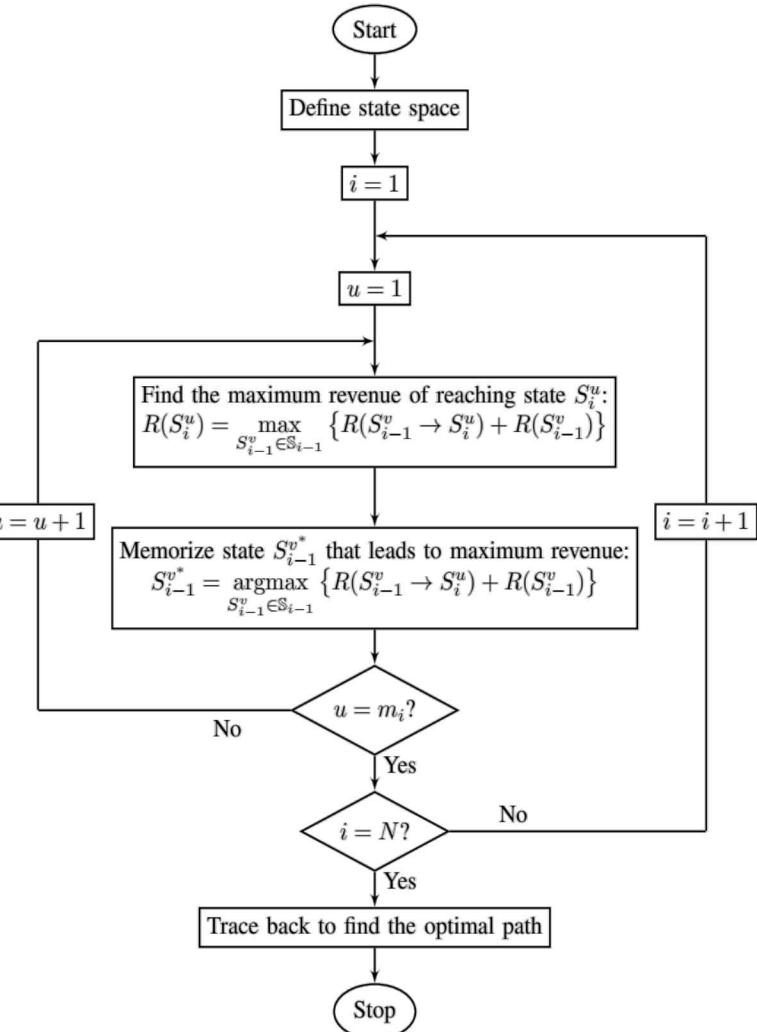
Evaluation of Energy Storage for Markets

- The objective is to maximize the revenue of an ESS when participating in multiple activities in a market area:

$$\max \sum_{i=1}^N \left(\sum_{j \in M_e} \rho_i^j (P_i^{\text{dj}} - P_i^{\text{cj}}) \tau + \sum_{k \in M_p} \rho_i^k P_i^k \right)$$

- The state of charge can be calculated as:

$$S_i = \eta_s S_{i-1} + \tau \sum_{j \in M_e} [f^c(P_i^{\text{cj}}, S_{i-1}) - f^d(P_i^{\text{dj}}, S_{i-1})] \\ + \tau \underbrace{\sum_{k \in M_p} \frac{1}{N_k} \sum_{t=1}^{N_k} [f^c(\sigma_{i,t}^{\text{ck}} P_i^k, S_{i-1}) - f^d(\sigma_{i,t}^{\text{dk}} P_i^k, S_{i-1})]}_{f_i^k(P_i^k, S_{i-1})}$$


- Example for energy arbitrage and frequency regulation:

$$S_i = \eta_s S_{i-1} + [f^c(P_i^c, S_{i-1}) - f^d(P_i^d, S_{i-1})] \\ + \underbrace{\frac{1}{N_r} \sum_{t=1}^{N_r} [f^c(\sigma_{i,t}^{\text{RD}} P_i^{\text{reg}}, S_{i-1}) - f^d(\sigma_{i,t}^{\text{RU}} P_i^{\text{reg}}, S_{i-1})]}_{f_i^{\text{reg}}(P_i^{\text{reg}}, S_{i-1})}$$

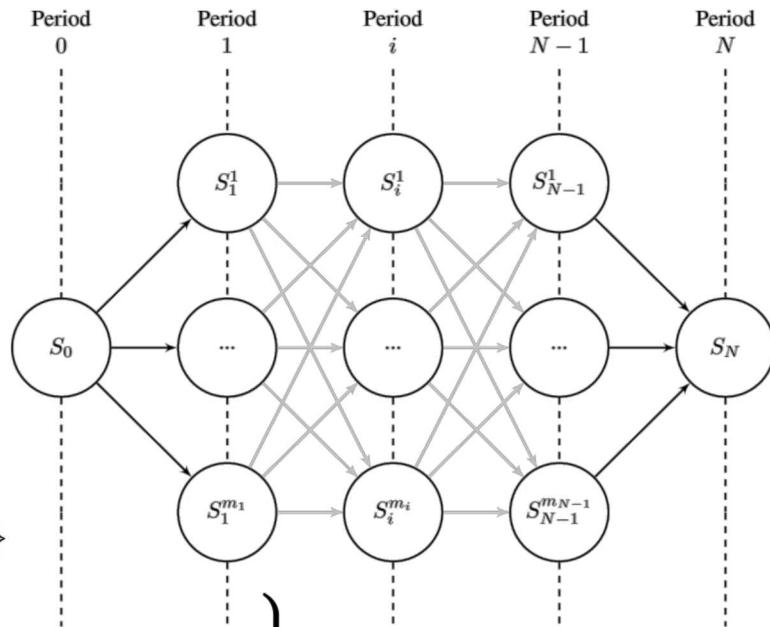
Dynamic Programming Approach

- Incorporating nonlinear storage model introduces nonconvexity and complex dynamics into the optimization problem.
- The problem becomes a sequential decision problem for which Dynamic Programming (DP) is well suited.
- The main advantage of DP is that it can find the global optimum by finding and memorizing the optimal subsequences.

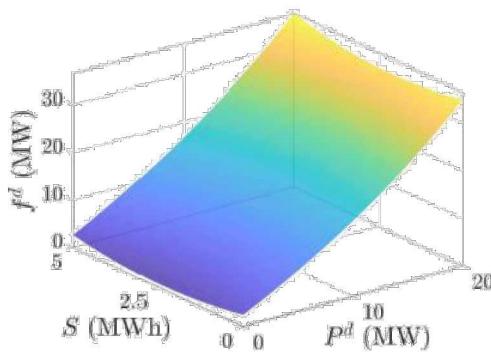
Forward Dynamic Programming

- Define the state space:

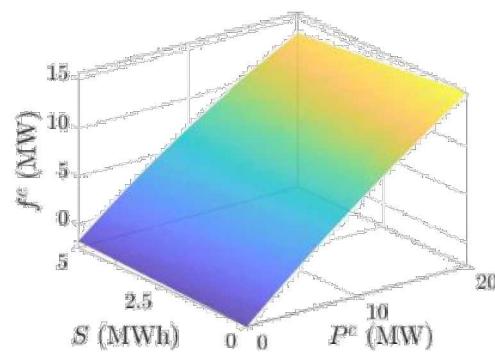
$$\mathbf{S}_i = \{S_i \mid S_{min} \leq S_i \leq S_{max}\} \quad \forall i \in [1, N-1]$$

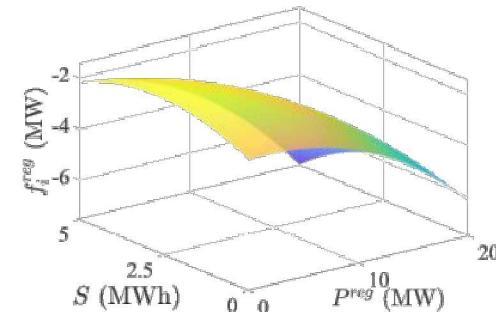

- Run forward to find the maximum revenue reaching each state at each time step:

$$R(S_i^u) = \max_{S_{i-1}^v \in \mathbf{S}_{i-1}} \{R(S_{i-1}^v \rightarrow S_i^u) + R(S_{i-1}^v)\}$$


$$R(S_{i-1}^v \rightarrow S_i^u) = \max \left\{ \sum_{j \in \mathbf{M}_e} \rho_i^j (P_i^{\text{dj}} - P_i^{\text{cj}}) \tau + \sum_{k \in \mathbf{M}_p} \rho_i^k P_i^k \right\}$$

$$S_i^u - \eta_s S_{i-1}^v = \tau \sum_{j \in \mathbf{M}_e} [f^c(P_i^{\text{cj}}, S_{i-1}^v) - f^d(P_i^{\text{dj}}, S_{i-1}^v)] + \tau \sum_{k \in \mathbf{M}_p} f_i^k(P_i^k, S_{i-1}^v)$$


- Memorize optimal sub-paths and trace backward to find the optimal path


Case Study – 20MW/5MWh VRFB in PJM

(a) Discharge function f^d of the VRFB system

(b) Charge function f^c of the VRFB system

(c) Regulation function f_i^{reg} of the VRFB system during the first hour of June 2017

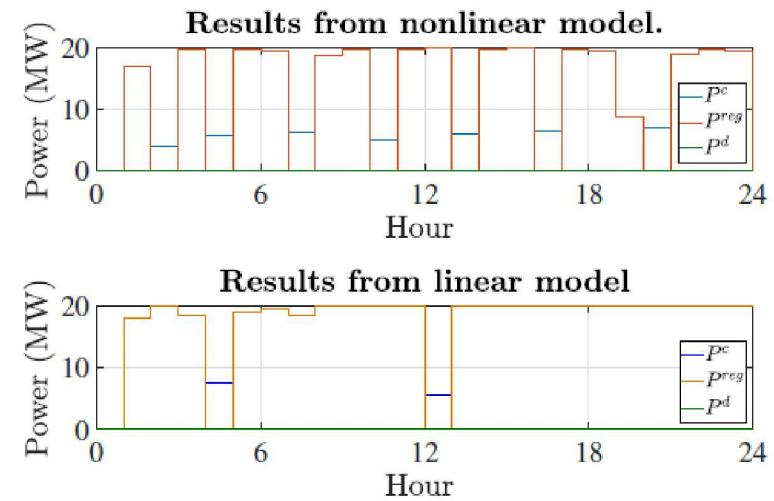
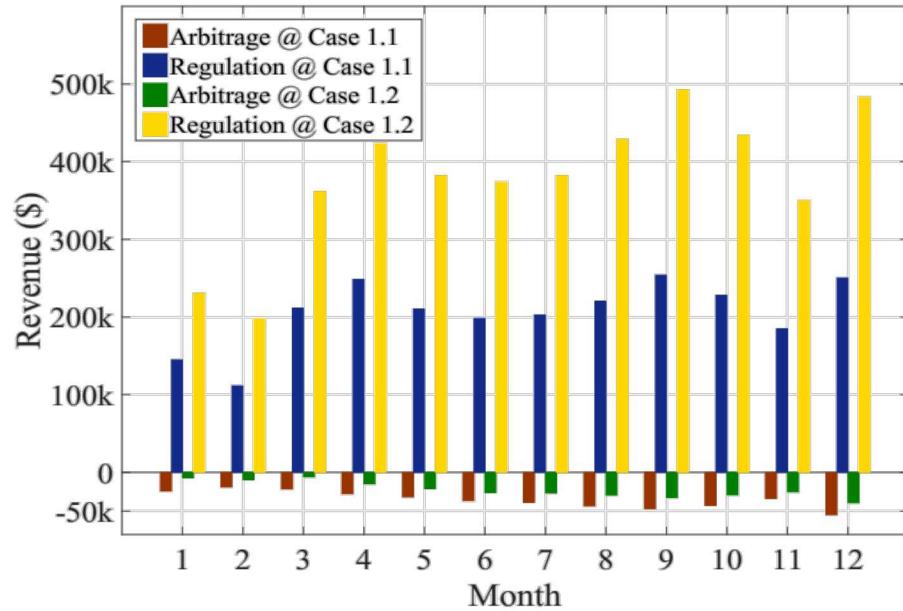
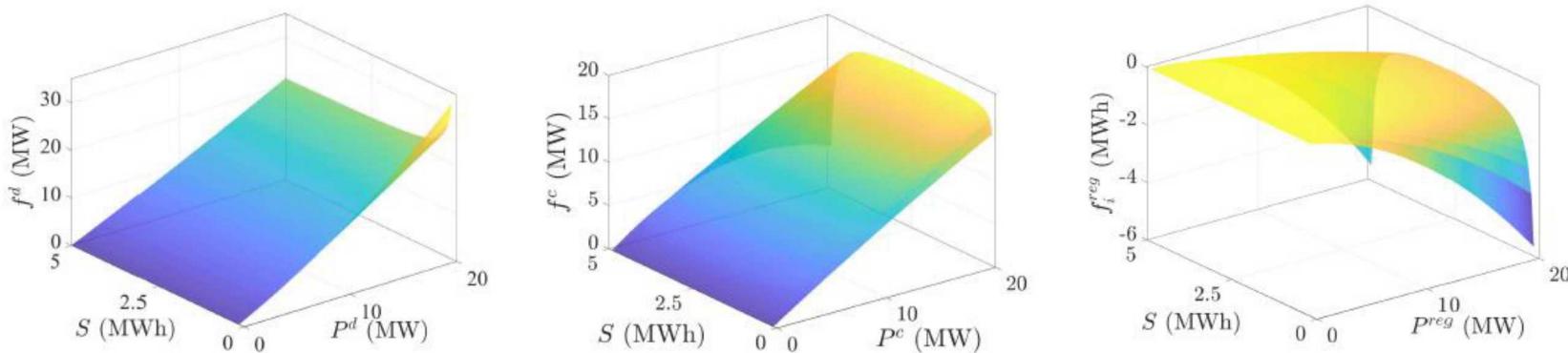




Fig. 5. Power output of the VRFB on June 1, 2017

Case Study – 20MW/5MWh Li-ion BESS in PJM

(a) Discharge function f^d of the Li-ion battery system (b) Charge function f^c of the Li-ion battery system (c) Regulation function f_i^{reg} of the Li-ion battery system during the first hour of June 2017

Fig. 3. Operating characteristics of a 20 MW / 5 MWh Li-ion system

Table 1: Case studies summary

Case	1.1	1.2	2.1	2.2
Model used	Nonlinear VRFB	70% constant efficiency	Nonlinear Li-ion	85% constant efficiency
2017 Arbitrage revenue (\$)	−419,428.97	−265,567.55	−88,779.05	−17,552.31
2017 Regulation revenue (\$)	2,463,602.39	4,537,275.94	3,963,421.31	4,658,817.18
2017 Total revenue (\$)	2,044,173.42	4,271,708.39	3,874,642.25	4,641,264.88
2017 Total revenue (%)	44.04%	92.04%	83.48%	100.00%

Conclusions

- The nonlinear energy flow models for VRFB, Lead-acid and Li-ion battery systems have been derived to better capture technology-specific characteristics of energy storage.
- A DP-based approach is proposed to solve the nonconvex optimization when incorporating these nonlinear models.
- Future work in this area would involve the incorporation of market uncertainty into the energy storage revenue maximization problem as well as consider other analytical and numerical methods to solve the nonconvex optimization problem.

References

- [1] T. A. Nguyen, D. A. Copp, R. H. Byrne, B. R. Chalamala, "Market Evaluation of Energy Storage Systems Incorporating Technology-specific Nonlinear Models," in *IEEE Transactions on Power Systems*, vol. 34, no. 5, pp. 3706 – 3715, April 2019.
- [2] Byrne, R. H., Nguyen, T. A., Copp, D. A., Chalamala, B. R., & Gyuk, I, "Energy Management and Optimization Methods for Grid Energy Storage Systems," in *IEEE Access*, vol. 6, pp. 13231-13260, 2018.
- [3] T. A. Nguyen, D. A. Copp, R. H. Byrne, "Stacking Revenue of Energy Storage System from Resilience, T&D Deferral and Arbitrage," accepted for the 2019 IEEE Power and Energy Society General Meeting, Aug 2019, Atlanta, GA.
- [4] D. A. Copp, T. A. Nguyen, and R. H. Byrne, "Adaptive Model Predictive Control for Real-time Dispatch of Energy Storage systems," accepted for the 2019 IEEE American Control Conference, Jul 2019, Philadelphia, PA.
- [5] A. Ingallali, A. Luna, V. Durvasulu, T. Hansen, R. Tonkoski, D. A. Copp, T. A. Nguyen, "Energy Storage Systems in Emerging Electricity Markets: Frequency Regulation and Resiliency," accepted the 2019 IEEE Power and Energy Society General Meeting, Aug 2019, Atlanta, GA.
- [6] T. A. Nguyen and R. H. Byrne, "Optimal Time-of-Use Management with Power Factor Correction Using Behind-the-Meter Energy Storage Systems," in the proceedings of the 2018 IEEE Power and Energy Society General Meeting, Aug 2018, Portland, OR. (Selected for Best Paper Session in Power System Planning, Operation, and Electricity Markets.)
- [7] T. A. Nguyen, R. Rigo-Mariani, M. Ortega-Vazquez, D.S. Kirschen, "Voltage Regulation in Distribution Grid Using PV Smart Inverters," in the proceedings of the 2018 IEEE Power and Energy Society General Meeting, Aug 2018, Portland, OR.
- [8] R. H. Byrne and T. A. Nguyen, "Opportunities for Energy Storage in CAISO," in the proceedings of the 2018 IEEE Power and Energy Society General Meeting, Aug 2018, Portland, OR.
- [9] D. A. Copp, T. A. Nguyen and R. H. Byrne, "Optimal Sizing of Behind-the-Meter Energy Storage with Stochastic Load and PV Generation for Islanded Operation," in the proceedings of the 2018 IEEE Power and Energy Society General Meeting, Aug 2018, Portland, OR.
- [10] T. A. Nguyen, R. H. Byrne, B. R. Chalamala and I. Gyuk, "Maximizing The Revenue of Energy Storage Systems in Market Areas Considering Nonlinear Storage Efficiencies," in the proceedings of the 2018 IEEE Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2018), June 2018, Amalfi, Italy.
- [11] R. H. Byrne, T. A. Nguyen, D. A. Copp and I. Gyuk, "Opportunities for Energy Storage in CAISO: Day-Ahead and Real-Time Market Arbitrage," in the proceedings of the 2018 IEEE Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM 2018), June 2018, Amalfi, Italy.
- [12] Christoph Lackner, T. A. Nguyen, Raymond H. Byrne and Frank Wiegandt, "Energy Storage Participation in the German Secondary Regulation Market," in the proceedings of the 2018 IEEE Transmission and Distribution Conference and Exposition, Apr 2018, Denver, CO.
- [13] T. A. Nguyen, R. H. Byrne, R. Conception, and I. Gyuk, "Maximizing Revenue from Electrical Energy Storage in MISO Energy & Frequency Regulation Markets," in Proceedings of the 2017 IEEE Power Energy Society General Meeting, Chicago, IL, July 2017, pp. 1–5.
- [14] T. A. Nguyen and R. H. Byrne, "Maximizing the Cost-savings for Time-of-use and Net-metering Customers Using Behind-the-meter Energy Storage Systems," in Proceedings of the 2017 North American Power Symposium, Morgan Town, WV, 2017, pp. 1-7.

Acknowledgement

Funding provided by US DOE Energy Storage Program managed by Dr. Imre Gyuk of the DOE Office of Electricity.

Colleagues:

- David Copp
- Dan Borneo
- Ray Byrne
- Babu Chalamala

Sandia National Laboratories

Contact: Tu Nguyen, tunguy@sandia.gov