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* Energy storage applications.
* Energy flow constant-efficiency model.

* Energy flow nonlinear models: Lead-acid/Li-ion battery,
Vanadium Redox Flow Battery.

* Evaluation of energy storage for markets.
* Dynamic programming approach.

e Case studies.




;1 Energy Storage Applications ()

* Power applications
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e Customer demand charge reduction
* Transmission and distribution upgrade deferral

R. H. Byrne, T. A. Nguyen, D. A. Copp, B. R. Chalamala and |. Gyuk, "Energy Management and Optimization Methods for Grid Energy Storage
Systems," in IEEE Access, vol. 6, pp. 13231-13260, 2018.




Energy Flow Constant-efficiency Model

* A generic constant-efficiency energy flow model is
commonly used: Battery Water Tank
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Technical Challenges:

* Modeling charge/discharge efficiencies as
functions of operating states ( SOC, Temp.,
Input/Output Power).
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* Solving optimization problems incorporating
those models.
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Energy Flow Nonlinear Model (M)

The currently available technology-
specific nonlinear models of energy
storage only focus on the nonlinear
fast dynamics

These models use a set of partial
differential equations (PDE) to
precisely describe battery
electrochemical processes.

Therefore, they are not suitable for
techno-economic  analyses that
examine long time periods (minutes
to hours) given minimal knowledge
of battery electrochemistry.
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Lithium ion intercalation battery model [1]

[1] R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic, “Electrochemical model based observer design for
a lithiumion battery,” IEEE Transactions on Control Systems Technology, vol. 21,no0. 2, pp. 289-301, March 2013.




Energy Flow Nonlinear Model - VRFB @)

* The power loss of a VRFB includes
two components: power for pumping
the electrolytes and stack loss power E"%':k'"‘l
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T. A. Nguyen, X. Qiu, J. D. Guggenberger ll, M. L. Crow, and A. C. ElImore, “Performance characterization for photovoltaic-vanadium redox
battery microgrid systems,” IEEE Transactions on Sustainable Energy, vol. 5, no. 4, pp. 1379-1388, 2014.



.| Energy Flow Nonlinear Model - Li-ion/Lead-acid 2

* The power losses during charging or
discharging Lead-acid and Li-ion batteries
are mainly caused by the heat loss due to
ohmic and polarization effects.
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[1] O. Tremblay and L.-A. Dessaint, “Experimental validation of a battery dynamic model for ev applications,” World Electric Vehicle Journal, vol.

3, no. 1, pp. 1-10, 2009



Evaluation of Energy Storage for Markets ()

* The objective is to maximize the revenue of an ESS when
participating in multiple activities in a market area:
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,| Dynamic Programming Approach (@)

* Incorporating nonlinear storage (o)
model introduces nonconvexity
and complex dynamics into the =
optimization problem. [i=1]
. Find the maximum revenue of reaching statc? St
* The problem becomes a sequential BT = g, , VR )+ RS0}
decision problem for which= ‘ =
Memorize state S?_; that leads to maximum revenue:
Dynamic Programming (DP) is well o1 = g VAU~ S+ AL}
suited. :
- u=m;?
Yes
 The main advantage of DP is that it > N

Yes

can find the global optimum by
finding and memorizing the
optimal subsequences.

lTrace back to find the optimal path]




Forward Dynamic Programming (@)
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Define the state space:
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Run forward to find the maximum
revenue reaching each state at 6 Q Q
each time step:
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i ‘ Case Study - 20MW/5MWh VRFB in PJM
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12‘ Case Study - 20MW/5MWh Li-ion BESS in PJM
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(a) Discharge function f¢ of the Li-ion battery (b) Charge function f¢ of the Li-ion battery system (c) Regulation function f;“g of the Li-ion battery
system during the first hour of June 2017

system

Fig. 3. Operating characteristics of a 20 MW / 5 MWh Li-ion system

Table 1: Case studies summary

Case 1.1 1.2 2.1 2.2
Model used Nonlinear VRFB | 70% constant efficiency | Nonlinear Li-ion | 85% constant efficiency
2017 Arbitrage revenue ($) —419, 428.97 —265,567.55 —88,779.05 —17,552.31
2017 Regulation revenue ($) 2,463, 602.39 4,537,275.94 3,963,421.31 4,658,817.18
2017 Total revenue ($) 2,044,173.42 4,271,708.39 3,874,642.25 4,641, 264.88
2017 Total revenue (%) 44.04% 92.04% 83.48% 100.00%




s 1 Conclusions

The nonlinear energy flow models for VRFB, Lead-acid and Li-ion
battery systems have been derived to better capture technology-
specific characteristics of energy storage.

A DP-based approach is proposed to solve the nonconvex
optimization when incorporating these nonlinear models.

Future work in this area would involve the incorporation of
market uncertainty into the energy storage revenue
maximization problem as well as consider other analytical and
numerical methods to solve the nonconvex optimization
problem.
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