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2 I Outline

• Energy storage applications.

• Energy flow constant-efficiency model.

• Energy flow nonlinear models: Lead-acid/Li-ion battery,

Vanadium Redox Flow Battery.

• Evaluation of energy storage for markets.

• Dynamic programming approach.

• Case studies.



3 I Energy Storage Applications

• Power applications „fo
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• Customer demand charge reduction

• Transmission and distribution upgrade deferral

— Nominal
- 666.16i

0 10 20

seconds

 // 
30

Time

5 10

minutes

3

2.5

03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time (hours)
00 00

Cities and offices

; nuclear power plant
Factories

41101 
7,116

1)00,

; Thermal power plant

ig hydraulic power
generation

,,.jtiLtenewable energy Photovoltaic

ecological vehicle Wind generator

R. H. Byrne, T. A. Nguyen, D. A. Copp, B. R. Chalamala and I. Gyuk, "Energy Management and Optimization Methods for Grid Energy Storage

Systems," in IEEE Access, vol. 6, pp. 13231-13260, 2018.



Energy Flow Constant-efficiency Model

• A generic constant-efficiency energy flow model is
commonly used: clattery

PcIT

• Technical Challenges:

Si r/sSi_i + irk Pi T  c
rid

1111

• Modeling charge/discharge efficiencies as
functions of operating states ( SOC, Temp.,
Input/Output Power).

Water Tank

1* El

Si = rIsSz-1 fc (Plc, St-1) fd (131d, si-1) T

Total charged power Total discharged power

• Solving optimization problems incorporating
those models.



5 I Energy Flow Nonlinear Model

• The currently available technology-
specific nonlinear models of energy
storage only focus on the nonlinear
fast dynamics

• These models use a set of partial
differential equations (PDE) to
precisely describe battery
electrochemical processes.

• Therefore, they are not suitable for
techno-economic analyses that
examine long time periods (minutes
to hours) given minimal knowledge
of battery electrochemistry.
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Lithium ion intercalation battery model [1]

[1] R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic, "Electrochemical model based observer design for

a lithiumion battery7 IEEE Transactions on Control Systems Technology, vol. 21,no. 2, pp. 289-301, March 2013.
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• During charge: fc = Tic pstackc

61 Energy Flow Nonlinear Model - VRFB

• The power loss of a VRFB includes
two components: power for pumping
the electrolytes and stack loss power
[1].

• During discharge: fd
pstackd
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T. A. Nguyen, X. Qiu, J. D. Guggenberger II, M. L. Crow, and A. C. Elmore, "Performance characterization for photovoltaic-vanadium redox
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, I Energy Flow Nonlinear Model Li-ion/Lead-acid

• The power losses during charging or
discharging Lead-acid and Li-ion batteries
are mainly caused by the heat loss due to
ohmic and polarization effects.

• During discharge: fd = pd/th, +pld

P1(1 = 10-6n 7- + ic2ell
s)
 /cells

pld [( r kA.5 1Dd 2 kS (S — S) Pd

S S )

• During charge: r = rip pc Plc

ve.kš ,2 kq (š s)Plc — 10-6n [(r. zcell + ken
S — S th.i-off

kS (S — S)plc q 
[(r 

kS  

) (nP Spc)2 
pc

VS s 

Discharge Chracteristic at 1C

Capacity (Ah)

[1] O. Tremblay and L.-A. Dessaint, "Experimental validation of a battery dynamic model for ev applications7 World Electric Vehicle Journal, vol.
3, no. 1, pp. 1-10,2009



8 I Evaluation of Energy Storage for Markets

• The objective is to maximize the revenue of an ESS when
participating in multiple activities in a market area:
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9 I Dynamic Programming Approach

• Incorporating nonlinear storage
model introduces nonconvexity
and complex dynamics into the
optimization problem.

• The problem becomes a sequential
decision problem for which
Dynamic Programming (DP) is well
suited.

• The main advantage of DP is that it
can find the global optimum by
finding and memorizing the
optimal subsequences.
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10 I Forward Dynamic Programming

• Define the state space:

si = {Si smin < < Smax} Vi c [1, N —

• Run forward to find the maximum
revenue reaching each state at
each time step:
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11 I Case Study 20MW/5MWh VRFB in PJM
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12 Case Study 20MW/5MWh Li-ion BESS in PJM
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Fig. 3. Operating characteristics of a 20 MW / 5 MWh Li-ion system

Table 1: Case studies summary

Case 1.1 1.2 2.1 2.2

Model used Nonlinear VRFB 70% constant efficiency Nonlinear Li-ion 85% constant efficiency

2017 Arbitrage revenue ($) —419, 428.97 —265, 567.55 —88, 779.05 —17, 552.31

2017 Regulation revenue ($) 2, 463, 602.39 4, 537, 275.94 3, 963, 421.31 4, 658, 817.18

2017 Total revenue ($) 2, 044, 173.42 4, 271, 708.39 3, 874, 642.25 4, 641, 264.88

2017 Total revenue (%) 44.04% 92.04% 83.48% 100.00%



13 Conclusions

• The nonlinear energy flow models for VRFB, Lead-acid and Li-ion
battery systems have been derived to better capture technology-
specific characteristics of energy storage.

• A DP-based approach is proposed to solve the nonconvex
optimization when incorporating these nonlinear models.

• Future work in this area would involve the incorporation of
market uncertainty into the energy storage revenue
maximization problem as well as consider other analytical and
numerical methods to solve the nonconvex optimization
problem.
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