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S Introduction ) .

= Abundant resource of untapped energy exists in ocean

= Energy from ocean waves may provide regular source of power with intensity
that can be accurately predicted several days before arriving at capture point

= Energy from waves considered more predictable (less stochastic) in nature then
wind or solar energy

= \Wave energy capacity in entire ocean estimated between 8K-80K TWh/yr or 1-
10 TW future energy and power generation

= On average each wave crest can transmit 1—50 kW/m
= Many WEC devices are being considered by private industry to harvest energy
= Specific class for this study will focus on omni-directional point absorber/buoy

= Biggest challenges for all renewable energy generation is for variable power -
reactive power or ESS will be required to deliver quality power at the grid
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WEC Geometry and Model Description

i

* Approximate hydrodynamic model known as Cummins’ equation of motion

(m+a(o0))z + / he(T)(t —T)dT + kz = Fe + Fy
0

« Simple case defined for regular wave with single frequency excitation force

(m 4+ a1)Z1 + c121 + kz1 = fe, + fu,

» Excitation force for a single frequency is

fe1 = Ae1 Sin(wlt + 991)
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WEC Control Buoy Design ),

PDC3 design methodology for RCC WEC

WEC modeled as simple MSD plant
N

mz+cz+kz = Fy —I—Z Fe, sin€;t (Fourier series)
=
« PD controller per channel | - -
Fu=) Fu =Y [-Kpz — Kp,]
J=il =1

Results in

mz; + (c+ Kp,)zj + (k + Kp,)zj = F, sin{);t

For single frequency forcing function
mz+ (c+Kp)z+ (k+ Kp)z = Fysin Qt

8
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WEC Control Buoy Design ),

NL Control Design for RCC WEC
mzi+ (c+ Kp)z+ Knpz> = F,
NL Control Design for NL HG Buoy Geometry WEC
« Equation of motion
mz +cz + KHG(O)[%:B —nz? +n2] = %]{HG(G)I]B + Fy
- Wave elevation given as 7)
« Function of steepness angle parameteris K pyg(a)

« Rate feedbacktermis F, =—Kp=z

- Contains cubic spring “like” term 1 Ky (o) 2*
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Numerical Simulations
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Numerical Simulations
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e 4 Sea States Analyzed ) e,

These 4 Sea States with 5 min Durations will be applied to the HG
buoy design to fully evaluate power/energy extraction

2 Sea States™ related to Nags Head in NC - Bretschneider Spectral Density

Sea Hs Tp Duration e F=1/8.33
State (m) (sec) (sec) = 8 e F =119
1* 546 833 300 £ . m—Fg=ii2 |
2 7.0 9 300 % 4r
2
78]
3 5 12 300 2T
4+ 551  16.67 300 0

0 0.1 0.2 0.3 0.4 0.5 0.6
Frequency (Hz)

Note: Spectrum generated by Bretschneider and corresponding time domain data by spec2sdat Matlab
functions from:

Perez, T.; Fossen, T. A Matlab Toolbox for Parametric Identification of Radiation-Force Models of Ships

and Offshore Structures, Modeling, Identification, and Control 2009, 30, 1-15. 14
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ichizaice] Conclusions ) S,

= Presented nonlinear geometric buoy design for WECs

= HG geometry produced nonlinear dynamic model with inherent reactive power

= Reactive power produced from interaction with the waves and buoy

= For single frequency PDC3 RCC compared with HG buoy design

= Simulations demonstrated increase power and energy capture for the HG design

= A Bretschneider spectrum of wave excitation input conditions evaluated HG design

= Exploiting NL physics in HG design simplified operational performance compared to
optimized linear RCC WEC

= HG steepness angle was varied wrt wave and an initial optimization produced
double the energy capture

= Future work will include multiple sea states and more refined optimization for the
steepness angle
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DOE and DoD Focus Energy Surety @,

= Energy Surety— provides cost effective supplies of energy that are
reliable, safe, secure, and sustainable.

= Requires - forward-looking energy surety; development of novel

intelligent grid architecture in order to be robust, effective, and
efficient.

= Desirable metrics SSM:

= Unlimited use of renewable energy
power sources

Power Distribution
Connections

e Ve o a4

= |
FOMBN UORRIUNWILIOD

= Reduced fossil fuel-based power
generation

= Reduced energy storage system (ESS)
requirements

= Balanced control of generation,
storage, and loads in an efficient and

secure paradigm 23




Utilized to Design and Specify ESS

= Requirements matched to
specific ESS (Device Examples)
= Power -
= Energy
= Frequency

= Flywheel ESS Example:
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EXAMPLE: ESS Flywheel Energy Storage Transfer

Function First-Order Band-Limited ESS Design
= Monolithic Flywheel ESS '}° r— Derive:
Rio Ly Ay PM Machine Closed loop
y + Bode plot —
. I ""’(u%% determines
= Transfer function = frequency
= characteristics
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Ongoing/Future Work 7l

= Tri-level HSSPFC architecture for Navy All-electric Ship and EPG
networked Secure-Scalable Microgrid (SSM) Applications

= Trade off and selection ESS Rapid Prototyping Controller:
. : : Vs i)  Coupled models (EMT)
RT, HIL, PHIL integration/validation i) Controller validation

= Coupled generator/bus networked microgrids
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controller e = « OPAL-RT System Architecture
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and .
Performance  {1ish bandwidth « SNL Architecture custom
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* Prototype control Matlab/Simulink/
RT-Lab environment 26
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