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• Abundant resource of untapped energy exists in ocean

• Energy from ocean waves may provide regular source of power with intensity

that can be accurately predicted several days before arriving at capture point

• Energy from waves considered more predictable (less stochastic) in nature then
wind or solar energy

• Wave energy capacity in entire ocean estimated between 8K-80K TWh/yr or 1-
10 TW future energy and power generation

• On average each wave crest can transmit 1-50 kW/m

• Many WEC devices are being considered by private industry to harvest energy

• Specific class for this study will focus on omni-directional point absorber/buoy

• Biggest challenges for all renewable energy generation is for variable power -

reactive power or ESS will be required to deliver quality power at the grid

3



Michigan
WEC Geometry and Model Description

• Approximate hydrodynamic model known as Cummins' equation of motion

I/

• Simple case defined for regular wave with single frequency excitation force

(m ai)ii kz1 — fel +

• Excitation force for a single frequency is

fel = Aei sin(wit + 01)
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National
Laboratories
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Wate

Heave

Motion.

WEC Geometry and Model Description

Draft, 211

1 

Radius, r

PTO

Actuator
Asse bly

A
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• WEC modeled

ayes as linear
actuator

• Part of PTO
A

system
• Reactive mass

ValAMPUnit

r 4.47 m

h 4.47 m

submerged
deep enough
oscillations are
negligible

• Baseline linear
geometry
defined as
RCC

• RCC geometry WEC buoy design and corresponding parameters
5
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W er Line

Heave

Moti

Dee ly S b erged

Reaction M ss

A

A ator

IAssembly

A

W ves

Parameter Range Unit

r 5.72-10.0 m

h 8.18-2.68 m

35-75 deg

• HG geometry WEC buoy design and corresponding parameters
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• Example capture ratios for several difference control strategies:
• CC — complex conjugate
• MPC — model predictive control
• PDC3 — proportional derivative CC control
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Heave
1 -DOF
System
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Michigan
WEC Control Buoy Design

PDC3 design methodology for RCC WEC

• WEC modeled as simple MSD plant

  Fti

• PD controller per channel j

• Results in

N

Fej sin Slit (Fourier series)

(c K Dj)ij (k Kpi)zi = Fej sin Qit

• For single frequency forcing function

irn.Z +(c+ KD)i + (k + Kp)z = F0 sin Sit

Sandia
National
Laboratories

8



Michigan
WEC Control Buoy Design

NL Control Design for RCC WEC

77/1 + (c KD)z+ 3= F,

NL Control Design for NL HG Buoy Geometry WEC

• Equation of motion

I 3 2
77/i + KHG(a)[v -71z 2z = 1 -

3
KHG(a)773 Fu

• Wave elevation given as ti

• Function of steepness angle parameter is KH G (a)

• Rate feedback term is Fu =

• Contains cubic spring "like" term 3 KHG(a)z3

Santla
Maori
laboratories
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Numerical Simulations
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• Single frequency excitation force
response

• Single frequency control force
response

10



MichiganY;(ifo
Michigan Technological University •

1 0

6

4

17 1)

2

15

►

t

It

Numerical Simulations

10 20 30
Time (sec)

RCCPDC3
- HGhigh

40

HG a2

50

-10  
0 10 20 30

Time (sec)

RCCPDC3
- HGhigh

HG a2

40 50

• Single frequency real power
response
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• Single frequency reactive power
response
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• Single frequency
energy capture
response
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• Single frequency position response

• Single frequency velocity response
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Michigan 4 Sea States Analyzed

These 4 Sea States with 5 min Durations will be applied to the HG
buoy design to fully evaluate power/energy extraction

2 Sea States* related to Nags Head in NC

Sea Hs Tp Duration
State (m) (sec) (sec)

1*

2

3

4*

5.46

7.0

7.5

5.51

8.33

9

12

16.67

300

300

300

300

10

8

2

0
0 0.1 0.2 0.3 0.4 0.5 0.6

Frequency (Hz)

Sandia.
4 jrna tiatioogories

Bretschneider Spectral Density

Fpl =1/8.33

Fp2=1/9

F
P3 
=1/12

Fp4=1/16.67

Note: Spectrum generated by Bretschneider and corresponding time domain data by spec2sdat Matlab
functions from:
Perez, T.; Fossen, T. A Matlab Toolbox for Parametric ldentification of Radiation-Force Models of Ships
and Offshore Structures, Modeling, Identification, and Control 2009, 30, 1-15. 14
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• Bretschneider spectrum
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• Bretschneider spectrum
wave input Sea State 4

• Vary alpha to increase
energy capture
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• Presented nonlinear geometric buoy design for WECs

• HG geometry produced nonlinear dynamic model with inherent reactive power

• Reactive power produced from interaction with the waves and buoy

• For single frequency PDC3 RCC compared with HG buoy design

• Simulations demonstrated increase power and energy capture for the HG design

• A Bretschneider spectrum of wave excitation input conditions evaluated HG design

• Exploiting NL physics in HG design simplified operational performance compared to
optimized linear RCC WEC

• HG steepness angle was varied wrt wave and an initial optimization produced

double the energy capture

• Future work will include multiple sea states and more refined optimization for the

steepness angle
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DOE and DoD Focus Energy Surety
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Laboratories

• Energy Surety— provides cost effective supplies of energy that are
reliable, safe, secure, and sustainable.

• Requires - forward-looking energy surety; development of novel
intelligent grid architecture in order to be robust, effective, and
efficient.

• Desirable metrics SSM:
• Unlimited use of renewable energy

power sources

• Reduced fossil fuel-based power
generation

• Reduced energy storage system (ESS)
requirements

• Balanced control of generation,

storage, and loads in an efficient and

secure paradigm

Power Distribution
Connections

I
3

g 
E Rt.

23



Utilized to Design and Specify ESS
• Requirements matched to

specific ESS (Device Examples)

o

-20

25

• Power

• Energy

• Frequency

• Flywheel ESS Example:
,

Magnitude Plot of -=
ire(

1 100 104 106

Freq (radls)Derive:
Closed loop Bode plot — determines
frequency characteristics contrast
with specifications and requirements

• Flywheel

• Super

Capacitor

• Battery

Conveller

R111 L ti 1.1

'11

Sande
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laboratories

Flywheel

Super Capacitor

1 'e .op

c
il

LI

c

Batten'
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EXAMPLE: ESS Flywheel Energy Storage Transfer

Function First-Order Band-Limited ESS Design

• Monolithic Flywheel ESS

• Transfer function

G(s) — ."
Iref

0

-5

20

-25

10-4

Converter

ruc, (s ((B+s .1f)(s lim(s Rcu+ 1 )+.s C „ Rc.1, Rpmi-Rcu+Rp.)+q C„ Rcu+11)

(vuo (s kp+ki)+S (s Lu+RLu)) (Rcu (—(B+s .1f ))—(s Cu Rcu+1)((B+s .1f)(s Lpm+Rp.)+1 t  ))

Magnitude Plot of —
iref

0.01 1 100

Freq (rad/s)

104 06

1400
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PMMachine
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Derive:
Closed loop
Bode plot —
determines
frequency
characteristics
contrast with
specifications
and
requirements

• Frequency Design Requirement

Required Baseline Storage Spectrum of Pulse Load

 41
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Freq (Hz)

Flywheel Frequency Response Meets Design Requirement 46



Ongoing/Future Work
• Tri-level HSSPFC architecture for Navy All-electric Ship and EPG

networked Secure-Scalable Microgrid (SSM) Applications

• Trade off and selection ESS

• RT, HIL, PHIL integration/validation

• Coupled generator/bus networked microgrids•

Agent/informatics
Energy Management

and Reasoning

Mode Selection

Stability
and
Transients

Servo
Controller

Local

Regulation

and

Perlel-manta

Electric Ship Plant
Based on SSM Microgrid Testbed
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Energy
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Rapid Prototyping Controller:
i) Coupled models (EMT)
ii) Controller validation

Host PC

RT Simulator

PC-Based Architecture

Ethernet

RCI-Express bus

RT Cornm.
Board

RC! Exp▪ ress
Adapter.

Model j Multi-

/
Multi

Corev. Core

Model jaw mSheamr:ryd 
CPU

FPGA

D/A 11 A/D I I DO I I DI

Physical Device

Imder test

CAN,

IEC61850

• OPAL-RT System Architecture
(standard configuration)

• SNL Architecture custom
configuration (OPAL-RT)

• Prototype control Matlab/Simulink/
RT-Lab environment 26


