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Striving for accuracy in constitutive models: confined or unconfined
2 response?

Electronics potting: mechanical, electrical, and environmental protection of components

■In a real application: Case is filled with polymer resin => Cap/cover is installed => Potting
material is triaxially confined

■ Simulation teams need to use the confined response for Constitutive model calibration and Validation

' What's the difference?
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Fig. 4 Axial dynamic compressive stress-strain curves of
EPDM rubber at various strain rates under nearly uniaxial
strain conditions

Potting material response is
critical for system design

Environments for
Potting Materials

➢ Shock/impact

➢ Encapsulated ♦

➢ Temperature ♦
B. Song, W. Chen. (2004) Dynamic Compressive Behavior of EPDM Rubber Under Nearly Uniaxial
Strain Conditions. Journal of Engineering Materials and Technology. 126: 213-217

Testing Conditions

High rate Kolsky Bar

Confined

High, Ambient, and
Low Temperature



3 Materials, Specimens, and Testing Conditions

Unfilled EPON 828/D230
• 25.4 mm diameter; 3.9 mm thick

• Density: 1128 ± 2 kg/m3

Test Conditions

• 3 Different Strain Rates — 200,
1000, and 3000 s-1

• 3 Different Temperatures — R.T.,
165° F (74° C), -50° F (-45° C)

• 5 repeated tests at each condition
• 90 total tests

GMB filled EPON 828/D230
• 25.4 mm diameter; 3.8 mm thick

• Density: 1044 ± 7 kg/m3

Particle Size (microns, by volume) (3M QCM 193.2)

Product Distribution Effective
To Size

10th% 50th% 90th% 95th%
A16/500 30 60 95 115
A20/1000 25 60 90 105

H20/1000 25 60 90 105
D32/4500 20 40 65 80
H50/10,000 EPX 15 35 60 70



4 High Rate Experimental Methods

Common confined configuration:
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5 Traditional Confining Tube

Fixture

CIncident

steel bar

Hollow steel cylinder

WC insert rod

Fixture 

WC insert rod

Strain gage

Transmission
steel bar

Fig. 1. Schematic SHPB setup for dynamic compression of a sand specimen under confinement. (a). SHPB schematic; (b). Test section for the sand specimen

Circumferential pressure: crrr(i) = croo(i) i 0.5 (a2 - 1)ECEh(t) and Err(1) = E00(t)

= Eh [(1 — vc) + (1 + vc)a2] /2

Hydrostatic pressure (mean stress)
am(1) = (crzz(t) + 2arr(t))/3 and Ern(t) = Ezz(t) 2Err(t)and volumetric strain:

Luo H, Cooper WL, Lu H. Effects of particle size and moisture on the compressive behavior of dense Eglin
sand under confinement at high strain rates. International Journal of Impact Engineering 65 (2014) 40-55



6  Confining Tubes with Specimens of Varying Length

III1M1.1

(Sand Specimen)

1

(Potting Material )

Case 1:

Strain gage is thinner than specimen
(hoop direction)

Provides an average measurement

Case 2:

Strain gage has similar length as specimen

Exact positioning is crucial

Slight changes in position may make strain
measurement inaccurate



1
7 New Method to Measure Radial Force using PVDF

Goal: direct force measurement that does not depend on positioning

Outer Confining Tube

PVDF Material

inner Confining Tube

Axial Compression

PVDF compressed in Z direction

Voltage signal



8 New Method to Measure Radial Force using PVDF

Polyvinylidene Difluoride (PVDF)

• Large piezoelectric constant

o Produced in thin sheets

o Used to measure forces in tight locations

Equivalent Circuit: kF (t) 
(t) = = ka (t)

Oscilloscope PVDF Sensor A

Oscilloscope
Memory

U (t) R O Vs

(t) = —
A 
=

AR 
dt

Q (t) t U (t)

0

t U (t)
F (t) =  dt

0 kR

• Requires assumption that the PVDF is loaded
perfectly in the Z-direction

• This does not capture any structural response
of the tube and sensor stackup

4; 1'5
E

• 1
c
a)
o

F2'
co
(-5 0.5

Fz

Q: charge
U: output voltage
A: PVDF area
R: discharge resistor
k: piezo constant

y= 2.22 x - 13574

•

y= 23.02 x - 15.03

y= 31.92 x- 129.03

•

250 500 750 1000 1250 1500

PVDF Stress (MPa)



9 PVDF Sensor Calibration

Although we have a nominal calibration value for the PVDF material, the sensor output must
be calibrated in situ

Pressure Control In-line Pressure

System Sensor
1

i

L  

/PVDF Sensor

Data Acquisition

Calibration Process:

Applied pneumatic pressure to sensor

Measured output of a calibrated sensor and the PVDF sensor

oVaried the maximum applied pressure (1000, 2000, and 3000 psi)

oVaried the environmental temperature using a thermal chamber (-50°, ambient, and 165° F)



10 PVDF Sensor Calibration
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11 Calibration
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12 PVDF Sensor Calibration

NPVDF Sensor output closely matches pressure sensor

NPVDF may not capture flat plateaus and unloading at this
temperature

Output at ambient and hot temperatures showed similar
qualitative behavior

The PVDF captured the pressure plateau and unloading more
closely at cold temperature

The charge-pressure calibration factor k' is defined as:

PVDF output
k'=  

Pressure Sensor output
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13  PVDF Sensor Calibration

oFor each temperature, all data at different
pressures was pooled

NExponential functions were fit to obtain a
charge-pressure relationship for each
temperature condition

oThe k' gage factor was different at different
temperatures

4.0x10-9 -

3.0x10-9 -

a) 2 0x109 -
E

1.0x10-9 -

0.0 -

• Kprime
ExpDec3 Fit of ambient_all B"Kprime"

Ambient

Model ExpDec3

Equation
y = A7'exp(-781). A2'eop(-7.82)+ A.31exp(-x/t3)+ y0

Pbt Kplime

YO 1.34827E-6 ± 4.04789E-8

Al -1.66336E-9 ± 5.73602E-12

11 1 08179E 9 ± 6.95864E-12

A2 -1.22644E-9 ± 2.10202E-11

12 2 20883E-8 t 4.72777E-10

A3 -1.34527E-6 ± 4.04789E-6

2.3199E-4 8.98393E-4
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°These fits were applied to obtain the
internal pressure for the Kolsky bar
experiments using the instrumented
confining tube



14 Output from PVDF/Dynamic Test
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Dynamic Compressive Stress-Strain Curve of GMB Filled EPON
15 828 at I65F at 1000 s- I

• Ravi-Chandar, K, and Ma, Z., (2000) "Inelastic Deformation in Polymers
under Multiaxial Compression," Mechanics of Time-Dependent Materials,
4..333-357.

• Luo, H., Cooper, W. L., and Lu, H., (2014) "Effects of Particle Size and
Moisture on the Compressive Behavior of Dense Eglin Sand under Confinement
at High Strain Rates," International Journal of Impact Engineering, 65:40-55.
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16 1

Confined Stress-Strain Response at
Different Rates and Temperatures



17 Strain Rate Effect - Unfilled EPON 828/D230
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18 Strain Rate Effect - Unfilled EPON 828/D230
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19 Temperature Effect — GMB Filled EPON 828/D230
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20 Unfilled vs. Filled EPON828
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21 Conclusions and Future Work

Created new sensor

o Direct measurement of radial pressure produced by specimen

o Composed of inner and outer confining tubes with sandwiched PVDF material

o Does not rely on exact placement with respect to specimens

Calibrated the sensor using a pneumatic pressure system and a known applied
pressure

o Allowed us to plot mean stress-volumetric strain curve for all conditions

Strain rate and temperature effects

o Showed strain rate effects in two materials —> Strain rate effect depends on temperature

o Showed temperature effects in two materials

Unfilled EPON develops lower stress than filled, but may be comparable given size
of error bands

Modeling and simulation teams should use this type of data in simulation of potted
systems


