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2 1 Outline

Motivation

Part design

Porosity reconstruction
Melt pool monitoring
Data correlations

Summary



3 I Material Assurance

Material formation concurrent
w/geometry

° want to predict part/matetial performance

o qualification / acceptance requires

o significant design margins

° understanding defect impacts on performance i .
. S >
At

How to ID a bad part?
° proof testing

° non-destructive inspection

° process monitoring

Objective
o correlate spatial sensor data (X,Y,Z,time) part pyrometry field part porosity field
to material porosity (X,Y,Z)




4 | Captured Holes Structure @)

3D Systems ProX 200 I
single layer process

Design

> 1x1x5.25mm column, 175 layers
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° holes
> 1-10 layer thickness (30-300um cubes)
o 3161 stainless steel
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Material characterization —150um

o Zeiss Xradia 520 Versa uCT

° voxel resolution: 1.98um
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captured holes design

captured holes part printed in 316LSS



5 I Material Reconstruction FIJI
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6 | ldentifying Captured Holes with yCT

Features are extremely coarse
° features >60um are easily distinguished

30um feature indistinguishable from process porosity
° 106 pores observed > 30um ESD

0.03 0.003
—®—nominal actual error

0.025 0.0025
2 2
= 0.02 0.002 %
€ €
& 3
€ 0.015 0.0015 £
= o
C>> Q
v =
s 001 \\ 0.001 5
o >

. | \\ -

0 C—e 0
0 1 2 3 4 5

Z position, mm



7 I Melt Pool Monitoring

Stratonics Therma-Viz 2-color pyrometer

° CMOS imagers: ~20um/pixel
> 750 & 900nm filters
> 50nm bandpass

° Temp;q = func(ly50,0/ Togoam)

pixel

Fixed field, angled viewing
> FOV: 80 x 65 pixels (1.6 x 1.3mm)
° frame rate: 6-7kHz

° desire >10kHz based on scan velocity

Data analysis
° 87,500 image frames per part

° custom scripts to estimate temperature
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Mapping Volumetric Thermal Inputs

2231°C

0

or
)

0.001

layer 20

10 20 30 40 S50 60 70 889 °C
pixel

1) Sum temperature at every pixel in
every image in an entire layer

2) Layer temperature maps are normalized
to their maximum temperature sum

@)

3) Assemble layers to generate
volumetric part map
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9 | Data Registration

Disparate spatial resolutions & aspect ratios

° layerwise pyrometer data scaled to uCT using bilinear interpolation

Part distortion
° requires linear translations in X & Y of pyrometer data

> top surface is “0” due to EDM build removal

Non-overlap region
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overlap error near part top (left) improved after registration (right)
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10 | ldentifying Melt Pool Outliers

Calculate melt pool characteristics (length, width, orientation, ...)

° aspect ratio vs. orientation determined valuable

Classify normal & outlier melt pools by neighbors
> outliers had <50 neighbors within a search region
o 457 outliers identified

length
orientation

aspect ratio = length / width

melt pool characteristics

Estimated pool aspect ratio
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Estimated pool onentation (degrees)



11 I Melt Pool Outliers

normal pools are elliptical, symmetrical & aligned to scan direction

outliers are not

° orientation angle outliers most likely signify spatter

° aspect ratio outliers most likely signify overheating / keyholing
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12 I Correlating Pores w/Outlier Melt Pools

2197 All voids (iso view) Correlated voids Non-correlated voids

Temperature (°C)
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Correlation established if pore(s) is located within search region
surrounding outlier melt pool
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overlay of melt pool contour with pore location




13 | Correlating Pores w/Outlier Melt Pools
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Summary

Material defects are a significant barrier to the adoption of metal AM parts

Explored feature & defect detection with two-color pyrometry & micro-CT

° tools generated for data reconstruction & analysis

Linked material porosity w/melt pool outliers
> high fidelity data (i.e. high resolution & bandwidth) is necessary

° correlations are not simple, but probabilistic in nature

Digital manufacturing requires more than an app

> data analytics are critical & represent significant investment
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Questions!?

Bradley Jared, PhD, bhjared@sandia.gov, 505-284-5890

Mitchell et al, Linking Pyrometry to Porosity in Additively Manufactured Metals, Additive Mfg, in process
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16 I Pyrometer Data Processing: Background Removal
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17 I Pyrometer Data Processing: Contour & Best Fit Ellipse
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18 I Mapping Volumetric Thermal Inputs
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Pyrometry Data Translations

Thermal Layer
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20 I Correlation Statistics

@)

Minimum ESD (um) 11.4 20 30 40 50 60 70
Thresh 0.17, 55% 68% 75% 82% 77% 83% 100%
Thresh 0.57,, 37% 51% 63% 74%0 71% 83% 100%
Thresh 0.77, 25% 38% 55% 67% 71% 83% 100%
Total # Pores 966 310 106 39 17 6 2

percentage of pores spatially correlated with outlier melt pools

False positive melt pools

Coincident melt pools

False positive rate

Thresh 0.17, 105
Thresh 0.5T, 204
Thresh 0.77, 265

352
Fou k.
192

23%
45%
38%

number of melt pools coincident & non-coincident (false positives) w/unintentional pores

Total # # > 30um
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Correlated to
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