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Introducition

The magneto Rayleigh-Taylor (MRT) instability arises in
magnetic direct drive inertial confinement fusion and can limit
the attainable fuel pressures and confinement times [I].

In this work, we investigate MRT growth across a wide range of
targets driven by a variety of current pulses and show that
various trends can be accounted for by a simple
phenomenological model that accounts for driver and target
properties via the acceleration history.

Establishing an understanding of MRT in present-day
experiments is critical for understanding MRT on next-
generation machines.

Scope of this work

We analyzed MRT growth in 54 radiographs over 31
experiments for a wide variety of targets and current pulses.
Most of these experiments were not designed to specifically
measure MRT!
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Sample radiographs from the "Decel"
and "Lincoln" [2] campaigns
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Experimental Analysis

The MRT amplitude and wavelength were measured using
contours identified by a threshold-based tracking algorithm.This
analysis produces a distribution of amplitudes and wavelengths
to quantify the variability of each data point.
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Note: Transmission images were Abel inverted to obtain density
maps.The areal-density threshold for contour tracking was
typically 0.5 • (PR)initiai.

Phenomenological RT Model

Using a thin-shell implosion model, we can relate driver and
target properties to instability growth via the acceleration
history:

r = ft-Cy dt = r(It Router)
0

(RT Growth function)
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The saturation condition (and transition threshold from linear
to non-linear models) is given by kA = 0.1.

The growth function depends on two parameters, the initial
target radius and the II-parameter.
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The growth function at peak
compression (R=0) is plotted
and compared to calculated
values for select experiments.
A notional 50 MA target is
highlighted.
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Results and Conclusions
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The model captures the dominant trends, particularly when
the wavelength is set to the initial liner thickness.This
suggests the liner thickness is playing a role in the instability
development.
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The enhanced stability of the short-pulse Decel target compared to the standard, long-pulse
target can be understood by a decrease in the il-parameter. Both targets were identical and were
driven by the same peak current -- the only difference was the risetime of the current pulse.

The inner MRT amplitude shows the effect of aspect ratio on instability feedthrough, with lower
AR targets being more robust compared to higher AR targets.

The wavelength increases approximately linearly with distance traveled across all experiments.
This might be a signature of bubble competition or merging.

The ability of the model to capture the dominant trends in the experiments suggests MRT growth
on the outside of conservatively scaled liners (il~const) will scale with the initial outer target

AMRT Router /ifradius as [3]. This is very encouraging!12 x 

Future work is to incorporate simulated I D acceleration histories into the model and to design
3D simulations to better our understanding of how MRT scales for different targets and currents.
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