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Introduction Experimental Analysis Results and Conclusions
The magneto Rayleigh-Taylor (MRT) instability arises in The MRT amplitude and wavelength were measured using
magnetic direct drive inertial confinement fusion and can limit contours identified by a threshold-based tracking algorithm. This 2 | _ ' '
the attainable fuel pressures and confinement times [I]. analysis produces a distribution of amplitudes and wavelengths = Ao = 200 um = Ap = 150 pm
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Scope of this work Note: Transmission images were Abel inverted to obtain density E 02 High AR 4 - E 1.4 i
- maps. The areal-density threshold for contour tracking was L A = 12F N .
We analyzed MRT growth in 54 radiographs over 31 typically 0.5 - (PR)initial - 20151 A . S 4L &l | ]
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Sample radiographs from the "Decel” -
I;nd "LincgolnE' [2] campaigns - —\ ] The enhanced stability of the short-pulse Decel target compared to the standard, long-pulse
~ o I 1 R _ 1 target can be understood by a decrease in the II-parameter. Both targets were identical and were
. '(R,II) =Ry | 1 Erf In Erf , : e
_Decel Standard | Lincoln 0 72 36 2 R(trise) \ 36 driven by the same peak current -- the only difference was the risetime of the current pulse.
s ZZZE / \ The inner MRT amplitude shows the effect of aspect ratio on instability feedthrough, with lower
" AR targets being more robust compared to higher AR targets.
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(Linear) (Nonlinear) The wavelength increases approximately linearly with distance traveled across all experiments.

, " . . This might be a signature of bubble competition or merging.
The saturation condition (and transition threshold from linear

to non-linear models) is given by kA = 0.1. The ability of the model to capture the dominant trends in the experiments suggests MRT growth
. o on the outside of conservatively scaled liners (II~const) will scale with the initial outer target
; The growth function depends on two parameters, the initial radius as Appr~ Ryuter ~ Iél/;X [3]. This is very encouraging!

. target radius and the II-parameter.

Future work is to incorporate simulated |D acceleration histories into the model and to design
(R =0) 3D simulations to better our understanding of how MRT scales for different targets and currents
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