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Fast Neutron Response of Organic Scintillators
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Fig. 1 Liquid scintillator light output L as a function the recoil
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Carbon Light Yield For Simulation Of Detector Response

Max carbon recoil energy:

EMe* ~ (.284E,

Quick rule of thumb:
1 MeV proton = 25% light of 1MeV electron
1 MeV carbon = 1% light of 1 MeV electron



Carbon Light Yield For Simulation Of Detector Response

Max carbon recoil energy:

EMe* ~ (.284E,

Quick rule of thumb:
1 MeV proton = 25% light of 1MeV electron
1 MeV carbon = 1% light of 1 MeV electron

Particularly matters for:

* Accurate simulation of detector
performance

* Inform design of new detection system
such as the Single Volume Scatter
Camera (see presentation N-27-03)



Carbon Light Yield For Simulation Of Detector Response
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Carbon Light Yield For Simulation Of Detector Response
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Carbon Light Yield — Constrain scintillation response models

Physics based model of the scintillation response

Canonical quenching model proposed by Birks (1951) 3:
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3].B. Birks, Proc. Phys. Soc. A, 64(10), (1951)



Carbon Light Yield — Constrain scintillation response models

Physics based model of the scintillation response

Second order quenching introduced by Chou (1952 ) “:

dL S(dE/ dx)

1 kB(4E 1)+ (9 )

4C.N. Chou, Phys. Rev. 87, (1952)
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Carbon Light Yield — Constrain scintillation response models

Physics based model of the scintillation response

Separation of nuclear and electronic stopping power by Hong (2002) °:
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Carbon Light Yield — Constrain scintillation response models

Physics based model of the scintillation response

Separation of nuclear and electronic stopping power and second order
quenching by the KamLAND collaboration §2010) :
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Carbon Light Yield — Constrain scintillation response models

Physics based model of the scintillation response

Separation prompt and delayed components by Voltz (1966) 7:
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Recent Measurements
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D-Breakup Neutron Source
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D-Breakup Neutron Source
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Light Yield measurements at the 88-Inch Cyclotron

* Kinematically over-constrained system

* Simultaneous proton and carbon light
yield measurements

* Broad-spectrum neutron source

J.A. Brown, PhD Thesis, UC Berkeley 2017.
J.A. Brown, B.L. Goldblum, et al. Journal of Applied Physics 124, 045101 (2018). 12



Light Yield measurements at the 88-Inch Cyclotron

Beam time supported by collaboration with
the Nuclear Data Group in the Nuclear
Science Division at LBNL through US DOE-SC

* Kinematically over-constrained system

* Simultaneous proton and carbon light
yield measurements

* Broad-spectrum neutron source

J.A. Brown, PhD Thesis, UC Berkeley 2017.
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Light Yield measurements at the 88-Inch Cyclotron

Beam time supported by collaboration with

the Nuclear Data Group in the Nuclear
Science Division at LBNL through US DOE-SC
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Carbon Light Yield measurements

EJ-204 “fast” plastic
scintillator
BC-404, NE-104
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Forward Angle Measurement
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Forward Angle Measurement
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Forward Angle Measurement
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Forward Angle Measurement
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Forward Angle Measurement

(n,p) scatter
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Event Reconstruction — Carbon Light Yield

* Reconstruction on
event by event basis
* PSD cuts on outgoing
detector amg - Outgoing TOF l

e Cuts on reconstructed

vs measured Incoming TOF

incoming TOF




Event Reconstruction — Carbon Light Yield

* Reconstruction on
event by event basis

* PSD cuts on outgoing
detector

* Cuts on reconstructed
vs measured
incoming TOF
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Simultaneous Proton & Carbon Light Yield Measurements

* Allows direct
comparison of the
light yield

* Example:
0.5-0.7 MeYV recoils:

L(p) = 7*L(c)

70X .
‘Preliminary < Carbon ions

50 :_ I_: |
£ * Protons.

o e — Lo
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Summary & Impact

Summary:

* Simultaneous, continuous measurement of the carbon
and proton light yield over a broad energy range in a
single measurement

Light Yield [ch]

Impact:

* Carbon light yield enables benchmarking of physics-

P I P S S T

based models of the specific luminescence of organic Recailng on Energy [MeV]
scintillators

* Supports the development of advanced neutron-
detection systems




Summary & Impact

Summary:

70><1 0®

* Simultaneous, continuous measurement of the carbon
and proton light yield over a broad energy range in a
single measurement

Light Yield [ch]

Impact:
* Carbon light yield enables benchmarking of physics- i
based models of the specific luminescence of organic Recoing lon Energy MeV]

P S S T

scintillators
* Supports the development of advanced neutron-
detection systems

See also:
Poster N-05-249: Comparative scintillation performance of
EJ-276, EJ-309 and a novel organic glass
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Forward Angle Measurement
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Combining all angles
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Backward Angle Measurement
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Backward Angle Measurement
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Backward Angle Measurement
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Light Yield measurements at the 88-Inch Cyclotron

Beam time supported via
collaboration with the Nuclear Data

Group in the Nuclear Science Division
at LBNL through US DOE-SC
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Broad spectrum
beam allows for

continuous
measurement of
proton light

yield relation

- 2
E =F tan"q
Kinematically over- p

constrained system __ E E sinzq
provides systematic

check F =F E’
Y Smr— J.A. Brown, PhD Thesis, UC Berkeley 2017. p n n
Proton Energy [MeV] J.A. Brown, B.L. Goldblum, et al. Journal of Applied Physics 124, 045101 (2018). 26
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Carbon Light Yield measurements

G ® 1
w w q H . n
| E,
( | a+vg|
| 1 A(A +1)0
recotl _ _ 2 . oinl —
E} E, <1 AT 1) cos(0) +V A% —sin4(0) + £ > — ()
\ - 1)

* n-p elastic scattering is forward angle constrained
* For carbon, only other significant reaction for 4-20 MeV incoming neutrons is
inelastic on the first excited state (Q=4.4 MeV) --double check n,3a

N7




Event Reconstruction — Carbon Light Yield
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Event Reconstruction — Proton Light Yield

70

* Reconstruction on G B oo eo

event-by-event basis
* Physics-based cuts
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