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Shock compression of hydrocarbons
to Mbar pressures: successes,
challenges, and lessons learned
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Which EOS should I use: Either or Neither

Mie Gruneisen

Sesame 7171

Tuned to gas gun data

ratrapolate to higher pressure correctly?

DFT to confirm KOS if no experimental data

DFT to guide building new EOS

Polyethylene Hugoniots
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Create polyethylene strands and use density functional theory (DFT)
calculations to simulate

First-principles simulations DFT

• VASP — plane-wave code w PAW core-functions

• Use of DFT codes simulating warm dense matter

M. P. Desjarlais Phys. Rev. B 68, 064204(2003)

• Great care in convergence

A. E. Mattsson et. al. Modelling and Simulation in Material Science and
Engineering 13, R1 (2005)

Assemble reference system

• 4 strands of polyethylene (200 atoms) of C16H34

• Ends capped to prevent cross bonding

• Equilibrate at constant temperature and volume.

• Equilibrated for 3000+fs at 0.1 to 0.2 fs

• AMO5 potential

• Block averaged Standard deviation of energy and pressure <1%

Lessons Learned:

• Ends capped with H to prevent cross bonding

• Very difficult to continue chains across periodic BC

• 16 atom strands adequate to represent much longer chains
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Quantum molecular
dynamics (QMD) simulations
give thermo-physical
properties
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DFT simulations are validated with high-precision experimental
data

Krpenbeck Hugoniot
• Lesson Learned: cannot extrapolate/interpolate far in

temperature before approximation becomes invalid

• The above stipulation reduces as material approaches
ideal gas

Ramped Simulation
• Lesson learned: Ramp temperature slowly enough to

approximate constant T

Experimental data into the dissociation
regime

Polyethylene Hugoniot
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High fidelity release isentropes for simulations where behavior
under release is important.

Simulated Hugoniot and quasksentropes
Calculating Hugoniot and quasi-isentropes

2(E2 — E1) = (P2 + P1)(V1 — V2)

Dissociation Shoulder (more visible in P/T
space)

Exothermic from molecular liquid?

Isentropic from atomic fluid

Molecular fluid from —1.9 g/cc to —2.5 g/cc
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Confirm shoulder in Hugoniot is from dissociation or melt by
tracking "bonds"

Set bond lengths
O Found in reference simulation

0 If using experimental data, add 5% to 10% for
atom vibration

O First minimum of g(r)

Atoms stay within bond distance for At
carbon vibrations —90fs)

Lesson Learned:
o Simulation still needs to run long enough for
atoms to move apart if not bonded

o Dissociating fluid species are transient
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The thermal component of the EOS is a parameterization of DFT
calculated internal energies as a function of temperature

Hydrostatic compression of 300 K isotherm
to approximate cold curve
O Lesson Learned: must increase density by a
small margin (0.1 g/cc? bigger?)

O Equilibrate for a few hundred fs to not
over compress bonds and explode material

Birch Muraghan fit to isotherm and called
cold curve

Fit to energy
O Energy — E, is only a function of T

O Temperature based curve fit to energy E[T]
gives thermal part of EOS

• E[p,T] = E[f]+Ec[p] spans most of
energy space
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There are key differences in behavior between the new EOS and
existing models
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More EOS examples

Argon Hugoniot
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EOS models have difficulty fitting both the molecular
liquid and the atomic liquid while capturing the
behavior of the dissociation regime
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CO2 Hugonoit: Low Pressures
• Three different exchange-correlation functionals used:AMOS, PBE, PW91

• The PBE functional matches the data the best

• All DFT simulations show the Hugoniot inflection — better observed in p — T

• Below inflection, SESAME 5212 describes the Hugoniot the best

• LEOS 2272 and 2274 include dissociation, but need improvement in this region
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Experimental CO2 Hugoniot Results
• Hugoniot measured to 5.5 Mbar - validate the DFT results

• Data determined using quartz and sapphire impedance matching - consistent results regardless of
impedance standard

• Experiments show a less compressible Hugoniot after dissociation

• LEOS 2272 is too compressible and SESAME 5212 has different trajectory

• LEOS 2274 utilized the DFT and Z experimental results for high pressure Hugoniot

600

500

400

o_

0 300
z

cu
it 200

100

0
1.2

Nellis et al.

• Schott

O This work, DFT - AMO5

O Boates et al., DFT - PBE

• This work, Z Expt. Data

SESAME 5212

LEOS 2272

LEOS 2274

Sapphire

1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8

Density (g/cm3)

28

26

24

22

20

mu'
18

16

14

12

10

6

• This Work, Z Expt. Data

Nellis et al.

O This work, DFT - AMO5

O Boates et al., DFT - PBE

SESAME 5212

LEOS 2272

LEOS 2274

•

8 10 12 14 16
U p (km/s)

18 20

•

Unclassified Unlimited Release



Unclassified Unlimited Release

CO2 Dissociation on the Hugoniot

• Utilize a bond tracking scheme
to examine dissociation in the
DFT simulations

• Dissociation begins
approximately 30 GPa

• Complete dissociation by 55
GPa

• CO2 dissociates into atomic C
and 0

• Small amounts of CO exist
between 40 GPa and 55 GPa
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Liquid Ethane and Ethane/Xenon mixture

Ethane and ethane/xenon mixtures (xenon immiscible in ethane)

Higher Z element dopants give the impression of softening the Hugoniot

Molar compression ratio at 375 GPa = 3.6. Mass compression ratio = 3.45

AND...when you are ordering gas, make sure t
difference between molar and mass mix!!!
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Liquid Ethane and Ethane/Xenon

N.thane po = 0.571 g/cc T( = 163 K

50/50 Mass po = 0.96 g/cc

50/50 Molar po = 1.676 g/cc

Xenon po = 2.97 g/cc

Pure xenon has a higher temperature for a
given pressure than any of the ethane mixtures

Molecular to atomic gas (bond
breaking/dissociation) absorb a lot of energy
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Glow Discharge Polymer (GDP)

Used as fusion capsule plastic

Can have germanium or silicon dopants

Simulation heated system and then cooled to find
initial state

Lesson: this type of quenching often (always?)
produces benzene rings which may not be correct
structure. Manufacturers work hard to get the
correct plastic structure in general.

Wrong color to have benzene rings

•
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VASP QMD simulations compared to experimental
data

VASP has good agreement with LLNL data
at relevant pressure

The large error bars on the VISAR data are
from samples too thick to see through (250
micron)

Thinner samples (180 micron) both VISAR
and PDV can see through

LLNL (Omega)/VASP differ from Z data by
6% in density and 25% in pressure

Z data has 2% error bars in density
(primarily from reference density of 1.03 +/-
0.02)

Incorrect reference structure?

Adsorption of other elements (water)?

Both cause initial density and energy to be
different than simulated.
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Characterization
Water absorption between 5% and 1% linearly to 50
microns (Stadermann et al)

Barrios sample 30 micron so 5% to 3% water

Baked sample (Pyro)...slightly stiffer

Water is not the difference in this case as the un-baked Z
data (orangq) should match Omega data...unsure why
they are different

Z data does not match simulation either

Wrong color so no benzine rings
c) yellow color=conjugation or alternating single and double
bonds

• Conjugation lowers transition energy into the visible
• Electrons can delocalize in a conjugated system

Wrong initial structure?
c' Monomer for polymerization is trans-2-butene not benzine

Van der Waals potential?

Try to reverse engineer initial structure.

of GDP
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Creating new GDP

New structure based on what happens during:

• Plasma polymerization process

• Photo-oxidation of polymers

• Photo-degradation of polymers

• UV glue curing accelerate photo breakdown

• The apparent IR spectrum (not shown here)

Constraints:

o Must be branching

o Must be conjugation

o H/C ratio must remain approximately the same

o Ketones?

o hydroxyl groups?

o Example to right but many other examples can exist
Courtesy of Keith Jones
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New GDP results

3.0 g/cc T —15,000 K

3.1 g/cc T-30,000 K

Streak camera and fit to grey body T-26,000 +/- 3000 K
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GDP with germanium dopant

Ge dopant at 0%, 0.6%, and 1%

Density at 1.05 g/cc and 1.13 g/cc

In some cases, substituted Ge for
carbon and others just randomly placed
Ge in the simulations

Method of Ge placement made minor
difference
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• At 1.05 g/cc, Ge significantly softens
Hugoniot

• Keeping initial volume and adding
germanium such that density
increased to 1.13 g/cc shows
compression ratio is similar but
different enough to warrant a new
EOS

Unlimited Release



Unclassified Unlimited Release

2 1 Poly(methyl methacrylate) aka PMMA

PMMA initial structure is well known (unlike GDP)

VdW potential

Experimental and DFT simulations match very well

EOS models have difficulty fitting both the before
and after dissociation regimes simultaneously
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22 Summary and Conclusions

All hydrocarbons examined this far dissociate at approximately the same compression along the Hugoniot

Complex, long chain hydrocarbon systems can be approximated with shorter chains and periodic systems

Structure of they hydrocarbon system must be reasonably close to actual structure

VdW usually matters (but not always)

Higher Z dopants soften Hugoniot (in density or compression space)

Dopants can often be substituted for carbon or just added to the system with little difference noticed in the final
Hugoniot pressure

Make sure your supplier gives you what you asked for

We have no idea the correct structure of GDP and are still trying to reverse engineer the initial conditions

Z and Omega data don't match and we don't understand why

Get the initial structure correct and DFT matches experiment quite well (HDPE, CO2, PMMA, Xenon/Ethane,
others)
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