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Motivation for power-flow modeling

High-fidelity power-flow modeling is critical to improving the performance of
experiments on present and future pulsed-power facilities. x
• Power-flow modeling incorporates a wide range of length/time scales:

• Load region: dense plasma, suitable for fluid modeling (MHD)

• Outer MITL: low-density plasma, suitable for PIC modeling

• Power-flow modeling stands to benefit from hybridization of PIC and fluid codes.
• EMPIRE: PIC, fluid, hybrid (Sean Miller, poster: NPI.0.00019)
• Chicago: PIC, fluid, hybrid (Nichelle Bennett, invited talk: GI3.00006)

• Drive toward reproducible science to inform hybridization:
• PIC vs PIC: When, and how well (quantitatively), do different PIC codes agree?

• PIC vs fluid: When do we expect kinetic and fluid modeling to agree vs disagree?

• Provides important feedback for code developers.
• Testing of new capabilities.

X For more information, see
• Daniel Sinars' plenary: FR1.00001
• https://www.sandia.gov/pulsed-power/
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EMPIRE vs Chicago: 1-D TEM-wave

• CO > COpe : EM wave should penetrate plasma with minor perturbations.

• 1-D: spatially uniform in y-direction.
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I EMPIRE-PIC vs EMPIRE-Fluid vs Chicago-PIC: 1-D TEM-wave

• Cold plasma results

• Until 70 ps, close agreement between all three codes in E and B fields.
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Planar MITL: Initialization and boundary conditions

Initialization

• A quasi-neutral electron-proton plasma layer is

initialized against the cathode.
• By starting with same initial plasma state, we can isolate

discrepancies in plasma evolution from discrepancies in

plasma production.

• Compare EMPIRE and Chicago for two cases:
1. Cold plasma (T0 = 0.1 eV), neo = 1015 m-3

2. Hot plasma (T0 = 10 keV), neo = 1015 m-3
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Boundary conditions

• BC 1: Drive voltage V(t) = (10 kV)*time/(0.2 ns), which

launches TEM wave propagating in x-direction.

• BC 2: Absorbing for particles; conducting EM (E, = Ey = 0)

• BC 3: Same as BC2; EMPIRE-PIC adds impedance feature,

which has minimal influence over simulation times examined.
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6 Cold plasma (0.1 eV): Evolution of plasma layer

EMPIRE-PIC simulations
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Cold plasma (0.1 eV): EMPIRE-Fluid vs EMPIRE-PIC vs Chicago
Electrons accelerate; protons remain stationary.
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Cold plasma (0.1 eV): line-outs

Relative differences (L1 norm) across line-out:
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Hot plasma (10 keV): fluid code doesn't agree as closely with PIC codes

Initial state

thermal expansion
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Should EMPIRE-Fluid compare more closely with PIC codes?

A Chicago-Fluid comparison would provide insight.
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Hot plasma (10 keV): line-outs

Relative differences (L1 norm) across line-out:
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Conclusions

• 1-D O-wave: Chicago and EMPIRE agree to within 1% at early
times, before reflections from boundary.

• 2-D planar MITL:
• Agreement in ne to within — 20%.

• Agreement in Ex to within — 5%.

• Agreement in Ey and B, to within — 0.5%.

• Future directions:
• Comparison between EMPIRE-Fluid and Chicago-Fluid.

• Comparison with collisional PIC.

• Hybridization of EMPIRE-Fluid, PIC in delta-f scheme.

• Extension to 3-D geometries, e.g. relevant to Z-accelerator


