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Abstract—Detecting and classifying device types and their
long term communication patterns and anomalies in massive,
noisy and anonymized Internet-of-things (IoT) data sets is a
challenging problem. Recent advances in computational ap-
proaches for Topological Data Analysis (TDA), including the
technique of persistence homology, appear to offer tremendous
possibles for understanding highly complex IoT data sets. This
paper presents the results of our use of TDA to understand
a data set captured over 9 months of hundreds of interacting
IoT devices situated in multiple residential settings. The data
set is noisy, incomplete and subject to multiple Pattern-of-Life
(PoL) fluctuations. We treated the data set as a collection of
multi-attribute time series and performed several types of IoT
classification experiments. We compared our results to other
single and multi-attribute techniques for time series analysis. The
outcome was that, as compared to these other standard methods,
TDA does particularly well for classifying incomplete, noisy and
PoL dependent IoT data.

Index Terms—Topological Data Analysis, Time Series, Internet
of Things, Persistent Homology

I. INTRODUCTION

By the end of 2018 spending on Internet-of-things (IoT)
devices was expected to exceed $772 Billion [1]. Over the next
few years predictions call for annual increases of 20% to 28%
in the number of installed devices for the connected home,
work, city, health and vehicular sectors [2]. The pace and size
of these deployments raises unprecedented challenges in the
areas of device and network management and system security.
From a management perspective users and organizations will
become increasingly hard-pressed to know which IoT devices
they own or over a long period of time what constitutes
normal and correctly functioning behavior. Closely related are
security issues: IoT devices are often left unpatched, vendors
use multiple and occasionally non-interoperable standards and
protocols, and IoT Information Assurance practices are at a
very early state. Finally, there are a slew of privacy issues.
Large scale municipalities or service providers need to have an
accurate picture of the number and types of IoT devices they
service. At the same time, user information associated with
specific IoT devices will be encrypted, so system information
must be obtained by observing meta data as it flows over public
networks.

This paper addresses some of the above challenges by
using machine-learning time-series analysis to perform auto-
matic IoT device classification based solely on network traffic
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patterns. We also provide a discussion of the mathematical
underpinnings of our TDA, and provide an explanation for
our parameter selection used in our analysis. Using a software
package we developed called the Time Series Analysis Tool
(TSAT), IoT network activity is represented using the symbolic
approximation methods SAX and SFA. TSAT transforms the
network activity of each IoT device to strings consisting of
symbols from a small alphabet. The resulting strings are
then analyzed using several different data mining methods,
including a grammar based approach and topological data
analysis (TDA). The goal is to on a per device basis identify
its function and characterize normal behavior.

We analyzed a dataset consisting of traffic from 183 devices
collected over a 9 month period. These devices we deployed in
several configurations representing typical home and office set-
tings. The data set was quite noisy and exhibited a wide range
of Pattern-of-Life behaviors. For instance, communication pat-
terns for cameras and environmental sensors is very different
at 2am on a Sunday evening versus a normal Tuesday morning
workday. Further, as might be expected in a realistic settings,
the collection activities were sometimes either incomplete or
simply failed. Finally, we only looked at metadata such as
packet size or interarrival time. This is important since future
IoT security and management techniques must deal with issues
of privacy or payload encryption.

To our knowledge we are the first group that has used
time series analyze for large scale, noisy and realized IoT
dataset. Our results indicate that with the appropriate choice
of symbolic approximation reduction and machine learning
algorithms it is possible to achieve high levels of correct IoT
classification based solely on network behavior. For instance,
while TDA methods preformed quite poorly when the dataset
consisted of traffic from a few days, it achieved surprising
levels of classification accuracy over the entire 9 month period.
This enables answers to managerial questions such as how
many and what types of IoT devices do I have? It can also
address security concerns such as being able to automatically
identify anomalous behavior.

The paper proceeds as follows: Section II provides some
background on IoT and time series machine learning, including
topological data analysis We also discuss related work. Section
IIT discusses our approach to time series IoT classification.
Section III-A provides details about testbed, while Section IV
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discusses our experimental results. Finally, V offers a summary
and some observations.

II. BACKGROUND AND RELATED WORK

This section provides some basic background on time series
data mining, TDA and IoT analysis. We also discuss some
work related to our research.

A. Time Series Data Mining Tools

Over the last few decades time series approaches to solve
data mining problems, such as classification and anomaly
detection, have been very popular. Collected communication
network packet data forms a natural time series. As a result,
researchers have used time series analysis for problems such
as traffic classification [3] and DDoS detection [4]. One advan-
tage of using time series for computer network analysis is the
availability of a large number of symbolic representations and
similarity measures. These can be used to achieve significant
computational advantages. In our work we primarily use the
highly popular SAX representation [5], which reduces each
event into a small number of symbols. These symbol strings
can then be used for classification via supervised learning
techniques, and for anomaly detection [6], [7].

The TSAT tool, a timeseries analysis and mining tool being
actively developed within the authors’ purview - represents an
effort to consolidate extant capabilities in modern experimental
time series mining methodologies, such as detailed above.
Although some of the techniques, such as SAX, do have
interpretations which are reconciliable with modern statistical
practice - some of the techniques are experimental, and in
some cases the results obtained themselves motivate an inquiry
into establishing a thesis for the cause of such fitness to a
particular application.

One particular innovation we take time to cover in more
detail than the more well known time series analysis methods
detailed above is the application of a system of analysis
methods, topological data analysis (TDA), in order to treat
a multivariate time series of signaling characteristics, for each
IoT device in the experiment, to derive a representative univari-
ate time series which, for example, provides an unreasonably
effective method for predicting indicators and warning (IW)
signals of historical stock market crashes [8]. The technique
is largely non-parametric, with the exception of choosing
characteristic time and length scales to describe the finest and
coarsest bounds to consider for describing the multitudes of
proximal-connective associations discovered between collec-
tions of measurements of the multivariate samples for each
device, over time. This explains the rationale for developing
the technique in some detail in the proceeding section.

B. Topological Data Analysis for Time Series

We start by an appeal to intuition, since the mathematical
foundation of TDA requires a level of development we cannot
provide here. However, we make an effort to provide sufficient
details for the mathematically sophisticated reader in order to
reveal the essential structure of the problem and computations,

and provide some examples to help build intuition for the
technique. For a comprehensive foundation to the field of
algebraic topology, we refer the reader to [9], [10]. In terms of
comprehending the performance results, the reader will lose
nothing by proceeding immediately to Section III after the
following preamble.

Recent work in TDA for data mining and analysis of
complex systems includes [8], [11], [12]. The work in [12], for
instance, demonstrates an invariable increase in classification
accuracy, over one of the state-of-the art techniques, for a
human activity recognition problem when TDA is used for
feature engineering. The work in [13] examined the entire
TDA processing pipeline from the point of view of applying
persistent homology, also to time-delay embeddings of univari-
ate time series, similar to [12]; however the precise features
formed from the topological information is slightly different.
They also described a new data set for TDA analysis called
TS-TOP. The technique used in the IoT experimental analysis
instead involves the application of a rolling time window of
a multivariate time series for each IoT device. The window
is then used to construct an associated abstract simplicial
complex, the fundamental data structure used to compute topo-
logical shape numbers (invariants) of the complex, describing
cavities of various dimensions in the complex. We use the
persistence landscape functional [11] to assess the change in
morphology of the complex over time, as did [8]. Theory [14]
shows that this functional is stable under small perturbations
of the data. For volatile or chaotic time series - such as stock
prices, EEG (human brainwaves), or turbulent fluid flow, the
particular sequence of measurements taken over time is far
less important to holistically understanding such a complex
system than the overall shape of the attractor - a shape upon
which the sequence of measurements tend to asymptotically,
regardless of certain modalities peculiar to the system’s normal
fluctuations and reactions to stimuli in the short term. In our
technique, we use TDA to estimate the long-term change
of shape-connectivity characteristics of the various attractors
describing the time series’ of device signaling statistics, per
device, and classified devices into related collections based
on a univariate statistic describing the changes in the shape
information over a long time scale (e.g. that of the experiment).

1) Homology for Simplicial Complexes : For complete
rigor, we refer the reader to [10] for the prerequisite back-
ground. However, we do give sufficient details here to satiate
anyone with a standard background in abstract algebra and set
theory to largely understand the technique at hand.

A collection of sets X is an abstract simplicial complex if
VYU € X,V CU =V € X, in particular, if VW € X, then
we require V N'W € X. The sets of X are called simplices,
or faces of X. Any simplex contains & as a face, and {@} as
well as @ are vacuously simplicial complexes of one and zero
faces, respectively. The dimension of an individual simplex
U € X is given by dim U = |U| — 1. If the cardinality of X
is finite, then X is a finite simplicial complex, and is finite
dimensional if the maximal dimension of its faces is. Let X° =
{zo, ...z} denote the vertices, or O-dimensional faces of X;



it is common to abuse notation and consider x; ~ {x;} for this
0

purpose. The k-skeleton of X is determined as X* = (%) =

{o c X°:|o| =k+1}; e.g., the k-dimensional faces of X.
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Fig. 1: Candidate simplicial complexes, of dimension < 3.

Various constructions aide in determining the abstract sim-
plicial complex from a metric space structure. The one we
use is the Vietoris-Rips complex, illustrated in figure 2.
Analogous to an MRI scan, it gives an adjustable parameter to
explore multiple resolutions of the data. Given a set X° C R”
of points, let a parameter » € [0,00) be given. Denote
by, for x € R", B.(z) = {y € R” > d(z,y) < r}
the ball of radius r about x, with respect to some metric
d: R" x R™ — [0,00). In our work, we use the euclidean
metric. The Vietoris-Rips, or simply Rips, complex R,.(X?) is
then given as follows: o C X is a simplex of R,.(X°) if and
only if d(z,y) < r, Vx,y € 0. Among other constructions,
the Rips complex is convenient to calculate; but potentially
introduces high dimensional artifacts. Since our focus will be
on dimensions 2 and lower, this is of ancillary concern.
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Fig. 2: Vietoris-Rips complex for fixed r.

Again, suppose that X is a complex with vertices X" = V.
We show how to compute the shape data for the Rips com-
plexes we will fashion from time series. By C,(X), denote a
free abelian group (over Zs), called the p-dimensional chains;
c € Cp(X) means ¢ = > xp By - 0; Bo € {0,1} mod 2.
Intuitively, the coefficients /3, simply tell us which faces of X,
are involved in c. The boundary operator 9: Cp, — Cp,_; maps
an individual simplex to the sum of its faces (its boundary
in algebraic form) d(o) = > o\ T, extending O linearly
over Zy chains yields 0 (3", cx» Bo - 0) = X gex» Bo - 0(0).
Intuitively, d(c) is the algebraic representation of the union
of the boundaries of simplices which are represented by
B, = 1. If a pair of simplices of dimension p share a

common face, then their sum in the above will cancel. Now,
0: Cp(X) — Cp_1(X) is a vector space transform (linear
operator), so kernels and images make sense. Denote by p-
cycles that subgroup Z,(X) C C,(X) where d(c) = 0,
Ve € Zp(X). These are the chains where the p-dimensional
boundary of a simplex involved in ¢ meets with other parts
of other boundaries of various other p-chains; e.g., closed
loops, bubbles and higher dimensional analogues. Denote
by p-boundaries that subgroup B,(X) C C,(X) such that
Ve € By(X), 3t € Cpra(X) 2 ¢ = O(r). Intuitively,
these represent the unions of boundaries of one-higher dimen-
sional simplices, with intersecting pairs of faces canceling.
Furthermore, if a cycle is not covered by the boundary of a
one-higher dimensional set of simplices, then this becomes a
representative cycle bounding a (p + 1)-dimensional cavity in
X. Algebraically, we need B,(X) C Z,(X) so to make the
quotient space Z,(X)/B,(X), whose only non-zero elements
the equivalence classes of cycles representing unique cavities
of dimension p 4+ 1 within X; the homology group of
dimension p. There are possibly many representative cycles
for a cavity - a rubber band can loop around a paper towel roll
in infinitely many ways, but each configuration can be slipped
into the other without cutting the rubber band or turning it
into a figure-eight. Suppose that ¢ € Cp41(X) is the chain
consisting of one (p + 1)-dimensional face with coefficient
2 _ _

1. Then O (C) = 8(276(;) 7') = ZTE(;) Zae(pzl)a' .
Observe |¢ — 0| = 2, in the summand, so Vo € (p_l),
Ju,v € X° 3 o U {u,v} = c. Therefore, o occurs twice for
that 7, and thus every ¢ occurs an even number of times in the
above sum for §%(c). Observe for an integer k, (2k)-o = 0 in
Cp(X), since 2k ~ 0 mod 2; and therefore §%(c) = 0. Since
XP is a basis for C,(X), 02 = 0. B,(X) C Z,(X), and the
homology group H,(X) = Z,(X)/B,(X) is well defined.

Now we combine the concepts of the Rips complex and
homology to arrive quickly to a notion of persistent homology.
For finite V' C R™, observe that if 0 < r < s then R, (V) C
R, (V). A nested family of complexes Ry, (V) C Ry, (V) C

- C Ry, (V) is called a filtration. When t; = 0, the first
complex in the filtration is just the discrete set of points
in V. Topologically, the inclusion maps R.(V)‘"* Rs(V),
when r < s, are continuous. [9, p. 111] shows that this in-
duces a homomorphism HZ-(RT(V))Hi(j‘““)Hi(RS(V)) in all
dimensions . The dimension of the image of H; (¢, ) counts
the number of (i + 1)-dimensional cavities that persisted
in the Rips radius interval [r,s]. The persistent homology
of these features in the filtration are represented by the
images of these induced maps, and form the basis of the
features we use for time series. For a non-zero homology
class o in H;(R,.(V)), for any r, define the birth time to be
b, = min{r € [0,00) : [0] € H;(R-(V))\[0]} and the death
time d, = max{s € [0,00) U {400} : H; 0o tp, s(c0) # 0}.
The persistence diagram P;, of the filtration’s sth dimensional
homology, is then given by integer points (b,, d, ), along with
multiplicity p(bs,d,) to count how many unique homology
classes in dimension ¢ shared (b,,d,) (c.f. [8]).



We use an alternative representation of a persistence dia-
gram, invented by [11], to capture the topological information
as a sequence of functionals, following [8]. Define f(; 4. (%)
to be zero everywhere, except for its linear interpolants by
line segments through the points (0,b,), (ds + bs/2,ds —
b,/2),(0,d,) The height of this tent function is how “strong”
the feature o is at time ¢. The longer it lives, the “stronger”
the feature. The kth persistent landscape of the filtration
is Ax(t) = k- max {f(b,,,dg)(t) : (by,ds) € Pz-}, where the k-
max is the kth largest value. For all the work here, ¢« = 1, and
so the homology classes we have in mind are 1-dimensional
loops related to quasiperiodic behavior in timeseries.

In [11], a norm on the combined functionals
A = {A\,Aa,...} is provided in terms of the standard
LP norm ||f|l, = ([|f[Pdu)'/? on a single functional.
Note that there are only finitely many non-zero A\, for a
finite simplicial complex, since P; only then has finitely
many points, and we will eventually exhaust P; at large
enough k. This norm is given as follows, for 1 < p < oo
[IAI[E = =52 [[X&]|b, providing a Banach space structure
on P;, for a given filtration, enabling comparing different
filtrations. The following figure shows the top 14 landscapes
of a filtration associated with figure 2; note that the 4 largest
holes in that figure are represented by the tallest peaks in the
graph.

5 rings top-14 landscape functions

0.035 4

0.030 4

0.025 4

0.020 4

0.015 4

0.010 4

0.005 4

0.000 4

Fig. 3: Top 14 Landscapes for 5 Rings Example.

2) Landscapes of Multivariate Timeseries:

Now we are prepared to present the method we used in
practice for detecting the timeseries of landscape norms for
each device’s multivariate measurements over time. Suppose
that we are given a multivariate timeseries

{xz; € R?:t=0,1,2,...} for d > 1. Select a window size
parameter w and a step-size Jt € N, and also a maximum
Rips radius r with which to grow the filtration of Rips
complexes from 0 to r for persistent homology. For i,t € N,
define t; = w + ¢ - §t, a particle swarm window

Zy, = {®t,—w, Tt,41-w, - - -, Tt,—1}. We then form a Rips
filtration for each time by

Ro(Z:,) € Ryym(Zy;) € --- C R(Zy;), where m is
implicitly determined by the software. From the filtration of

this particle swarm from the timeseries, we form the
landscape L? norm ||\, ]2 = (352, ||)\ti7k|\§)1/2, from the
landscapes M, . corresponding to the filtration’s P; diagram.
We use Gaussian quadrature to compute the norms of \; on
a grid size of 100 points by default. The final output of the
algorithm is the sequence of values ||\, ||2,

1=20,1,2,..., N, which measure the changes in
morphology of the time series’ particle swarm over time. To
give a bit of intuition about choosing the window size w and
step-size dt, we appeal to an example based on the evolution
of the dynamical system as follows:

LTt41 = 2xi—xy 1 “l‘% '(1+t/N)' ( Hlltt:mwttns + :tt::jsg >
where N is the size of the time interval sampling. This is the
second order evolution equation for a particle moving
according to its own inertial forces and attraction to 1/r?
forces of equal and slowly growing magnitude at

ly = (—ct,0) and 7 = (¢4, 0), so that the overall centroid of
the pair is at (0,0). Initially, ¢; = 0, and we start the initial
conditions x( and x; so that we have a particle first orbiting
in a perfect circle around the initial centroid. For different
methods of centroid control, note that the TDA method is
able to detect the structural change.

Fig. 4: Evolution of diverging attractors. Black trace indicates
position of centroids.

Intuitively, each of the circular orbits near ¢ = 0 generally
have about 300 samples per period, at the beginning. The
structure changes during ¢ € [0.3,0.7], which is a much
longer time scale than an individual orbit (there would be
about 60 orbits if the centroids indicated in black did not
diverge), since the change thus occurs within about 24 orbits.
Therefore, w = 600 gives is a large enough particle swarm
to, on average, cover about two orbits’ worth of data, but not



so large as to lose the 24 orbits, or so, of change information
by absorbing too much information from the stable states
near ¢ = 0, 1. The change in the first figure’s topology is
seen to be zero, and the second figures is significant. For the
step-size dt, we chose dt = 25 samples, since shifting the
particle swarm of 600 points by that much causes the
majority of points between consecutive particle swarms to be
coincident, and therefore, below the characteristic time scale
of the known modality shifts - and this speeds the
calculation up by a factor of about 25.
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Fig. 5: TDA assessment of modality change for experiment in
figure 4. Left is where there was no divergence of the attracting
nodes and right is where there was divergence.

Clearly, there is a predictive signal in the change period with
the TDA landscape norm series, indicated on both sides by
the red vertical lines in the plot, for when the point attracting
nodes diverge, and the orbits become more volatile. For the
non-diverging attractor on the left, all the TDA landscape
norms are at or below the threshold for floating point error
within O - indicating essentially no change in morphology is
being measured.

In practice, 40 hours (1 work week) was discovered to be
the best size for the window w in the IoT data by a grid
search, using classifier accuracy for devices as a proxy for
fitness. Reverse engineering this through the example logic,
one possible interpretation divined from the technique is that
significant configuration and modality change in any particular
class of IoT device happens over a characteristic time scale
longer than a work week, which is an interesting observation.
The step size was 6t = 1, is prudent when the number of
samples required to describe the shape of the overall attractor
modality is unknown, at cost of extra computation.

3) TDA Software: [15] provided a very efficient method
for computing persistent homology, a huge leap forward for
progress in the field of computational topology. Dmitriy Moro-
zov’s Dionysus?2 software ( [16]) was used to perform the Rips
and persistence computations in practice, and we thank him for
the vigorous discussions. Our software computes the landscape
functions, their norms, and handles the process of deriving
the particle swarms from the time series and computing the
persistent homology in parallel using Python.

C. IoT Analysis

Techniques for IoT device discovery include banner grab-
bing methods. The approach is to mine textual information,
typically obtained at the application layer, for labels iden-
tifying IoT devices. One example is the work presented in
[17] which used Nmap banner rules for device analysis.In
[18]the authors propose an Acquisitional Rule-based Engine
to automatically generate rules for IoT device discovery. The
work presented in [19] uses multiple classifiers to distinguish
between IoT and Non-IoT traffic. The authors looked at 9 IoT
and 4 non-IoT devices, and based upon TCP sessions were
able to accurately distinguish the two classes of devices.

Each captured IoT packet includes a large number of
attributes, both directly observable and calculated. This means
that IoT packet traces are multi-attribute time series. Examples
of directly observable attributes include packet arrival time,
packet length, and source and destination MAC address.
Notice that these attributes are obtainable even in the case
of encrypted traffic. Important examples of calculated data
include the mean and variance of packet sizes or interarrival
times for a particular ”conversation,” between a pair of MAC
address. Data mining for multi-attribute time series is still an
active research area [20]. One of the focuses of this paper is
to understand how TDA can be used for multi-attribute IoT
analysis.

III. TOT ANALYSIS TESTBED AND METHODOLOGY

This section describes our experimental setup, our process-
ing pipeline and the software we developed for this project.

A. IoT Testbed Setup

Figure 6 shows the proprietary testbed we for used our
analysis. As can be seen, the IoT devices connected to each
using a variety of wireless and wired technologies. Collec-
tively, the devices communicated to the Internet and back-
end cloud services provides through a gateway. The testbed
consisted of multiple rooms and hall ways, designed to emulate
how consumers would use IoT devices in residential and
commercial areas. The rooms also had desks and workstations,
and were used by workers associated with the project and
other workers who were not. The purpose was to observe and
experiment with IoT systems undergoing a normal pattern of
life as may be seen in a typical office environment.

The engineers experimenting with the IoT testbed had
workstations within the IoT enclave, and had access both
to wired and wireless transmissions. Our packet traces were



Device Type Number of Devices
Audio Speaker 8
Video Cameras 34
Doorbells 5
Fitbits 2
Game Controllers 1
IoT Hubs 39
Lights 13
Miscellaneous 8
3-D printer 1
Romba 1
Router 1
Environmental Sensors | 23
Switches 5
Tablets 2
TVs 21
TV dongles 16
Weather Stations 3

TABLE I: Number of deployed IoT devices

obtained from a server that captured traffic between the IoT
enclave the outside world. Thus, our experimental IoT data set
consisted of traffic either being uploaded or downloaded to the
cloud. Typical Internet destinations consisted of backend IoT
cloud storage devices, media streaming services, etc.

loT Packet
Analysis

Internet of Things Testbed Enterprise

Backbone

Fig. 6: Testbed

The lab contained a total of 183 IoT devices from a wide
variety of manufacturers. Table I shows the number of different
device types.

B. Experimental Approach and Processing Pipeline

All network traffic over a 9 month time period was col-
lected. Each received packet was time-stamped. For the logs
we analyzed, each time-stamped entry had source/destination
MAC and IP addresses, and transport layer ports along with the
device type for the payload. Notice that the transmitting device
may or may not be the device that originated the payload. This
enabled is to build a labeled training set. The captured log files
enabled us to compute a number of derived characteristics,
including, for a MAC or IP conversation, the total number of
bytes sent over a time window, the mean and the variance
of the interarrival time. The results of our experiments are
presented in Section IV. As will be seen, we experimented
with both single and multi-attribute time series.

In the case of a single attribute time series (regardless
of the semantic meaning of the attributed) the data was
converted into a SAX symbol. Labeled time series device
files were then used to train a classifier. We used a variation
of Representative Pattern Matching, essentially a string based
classification method using clustering [6].

For multi-attribute time series we used both observed and
derived attributes. We used two different approaches. The first
was topological data analysis using the Dionysus package [16].
The second was WEASEL+MUSE [20]. The output of this
step was a single attribute time series, which we then analyzed
using the above method.

We have implemented an integrated analysis tool called
TSAT, the Time Series Analysis. Training data is automatically
cross validated, and F1 and MCC scores are displayed after
testing.

IV. EVALUATION

The goal of this work was to determine the effectiveness
of device classification in the presence of noisy data, as
this would represent the problems faced by managers and
regulators of large scale IoT installations. We divided the IoT
device world into one of three classes. The first were cameras,
to include audio speakers, characterized by high-volume and
burst data. Some cameras continuously broadcast and some
are event activated, like as motion-trigged cameras and on-
demand audio speakers. The second were sensors, such as
environmental monitors. The third were called multi-purpose
devices, such as tablets or certain cameras that allowed for
two-way and streaming audio. Thus, each one of the devices
shown in Table I were divided into one of three classes. Note
that, depending on device type, some of the Video Cameras
were mapped into the category “camera” and some were
mapped into the category “multi-purpose.” Our goal was not
to preprocess testing data, in the sense that all log files were
analyzed.

A. Pattern of Life

Our analysis of the entire data set showed it to be noisy, in
the sense of incomplete and inconsistent, for several reasons.
The first was that due to factors such as system maintenance
or equipment upgrade either no collections were performed or
collections were incomplete. The second was due to device
Pattern-of-Life (PoL). It was to be expected that usage for
some types of IoT devices are impacted by the differences
between an average work day and Thanksgiving break, but
even within the same day there were significant variations.

Figures 7 and 8 illustrates this phenomenon. Figure 7 shows
the number of packets transmitted over one hour between
12:11 and 13:11 pm on a workday. We captured a total of
349,677 packets from 161 network interfaces. Figure 8 shows
the number of packets transmitted between 18:11 and 19:11 on
the same day. A total of 67, 610 packets were transmitted from
142 network interfaces. This PoL repeated itself throughout
the entire data set. We speculate that this type of noisy data



set well characterizes what data would look like in large scale
IoT installations.
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B. Single Attribute Selection

As with all data mining problems attribute selection is a
fundamental concern. We were interested in experimenting
with both single attribute and multiple attributed time series.
Each time series was a device “conversation”, as identified by
a transport-level endpoints. For single attributed time series
we discovered that the best results were obtained by looking
at the time number of bytes sent over a fixed time window. We
found that setting the time window to one hour worked well.
The next best single attribute was packet interarrival time.

For single attribute non-TDA classification, we tended to
get the best results with the training dataset consisting of
one day and the testing data set also for a single day. . Our
initial assumption was that we would get the best results by
normalizing the data in the form of min-scaling. Each data
point X is calculated as

Xmaa: - szn

where X is the entry in the time series, X,,;,, is the minimum
value in the time series and X, ., is the maximum value of
the time series. Table II shows the F1 per device class and the
weighted score.

We then eliminated min-scaling and found, under most sin-
gle day experiments, that we actually obtained better results.
For instance, Table III shows the results for the same training
and testing data set shown in Table II without min-scaling.
Here we present both the F1 and MCC score per device class
along with the overall weighted F1 and MCC score. Both

Xsc =

TABLE II: Univariate Time Series — Bytes Sent over a Single
Day with MinScaling

Device Type F1

Cameras 567
Sensors .83
Multi-purpose .59
Weighted .68

TABLE III: Univariate Time Series — Bytes Sent over a Single
Day Without MinScaling

Device Type F1 Device Type MCC
Cameras .87 Cameras .79
Sensors 811 Sensors 2
Multi-purpose  .789 Multi-purpose .72
Weighted .828 Weighted 75

experiments used the SAX data representation and the TSAT
tool.

These results are relatively robust to Pattern-of-Life. For
instance, for the data shown in the above tables the training
day was a nationally observed holiday while the testing day
was a routine work day.

C. Multiple Attribute Selection

We then explored the use of multiple attributes. Here we
present the results from using the WEASEL+MUSE multi-
attribute approach to TDA. WEASEL+MUSE uses feature
extraction via Bag of Patterns, performs a statistical feature
reduction and then does logistic regression for classification.
We tried both the SAX data representation and Symbolic
Fourier Approximation (SFA) data representation. For single
day training and testing we found minor differences with
the single attribute approach. For instance, for the data set
presented in Tables II and IIT we achieved a weighted F1 score
of .83.

When we examined either longer training or testing cases
the above approaches rapidly collapsed, with MCC scores
approaching 0. For this reason we experimented with TDA. We
found that we required at least one month for either training
or testing to get meaningful results. Our approach was to
first make the time series stationary by using the log first
order difference. We then passed it into the Dionysus library
function, which outputs a univariate time series. For brevity
we show the results with a sliding window of size 40, with no
skipped samples, and using a L? norm as the distance function.
Further, we found that, unlike for the results shown in Section
IV-B, min-scaling outperformed no-min-scaling for the single
attribute.

Table IV show the weighted F1 results for a variety of
experiments with a one month training and a one month testing
data set. As can be seen, some attribute combinations were
no better than random while others were slightly better. TDA
outperformed the WEASEL+MUSE approach when using the
attributes of Experiment 1, with a weighted F1 of .28.

Using the same training data we then increased the size of
the test data, and found a steady improvement. Figure V shows



TABLE IV: Multiple Attribute Selection for TDA

| Experiment | Attributes | Weighted F1 |

1 TCP+UDP combined to create average | .51
throughput (AVG) and Interarrival time
(IAT) time series

2 TCP+UDP combined to create total through- | .31
put (TOT) and IAT time series

3 TCP+UDP combined to create max through- | .41
put (MAX) and IAT time series

4 TCP+UDP combined to create MAX, TOT, 41
AVG, and IAT time series

5 TCP only to create MAX, TOT, AVG, and 49
IAT time series

6 MAX of send and recv streams for UDP and | .52
MAX for recv for TCP along with TCP only
to create MAX, TOT, AVG, and IAT time
series.

TABLE V: Topological Data Analysis - 8 months

Device Type F1 Device Type MCC
Cameras .687 Cameras 535
Sensors .835 Sensors 765
Multi-purpose .8 Multi-purpose .69
Weighted a7 Weighted .66

the results for one month training and 8 months testing for
the attribute combination for Experiment 6. Given the amount
of noise in the large dataset, we considered these results to
be quite good. Our conclusion was that, for relatively small
realistic IoT data sets, traditional time series approaches can
work fine, and TDA requires a minimum amount of data to
begin to work. However, given a large amount of data (multiple
millions of packets) traditional methods do not work, and TDA
performs quite well.

V. CONCLUSIONS

This paper described our time series analysis of a 9 month
data set of network traffic sent and received by 183 IoT
devices. The focus of our efforts was to perform IoT type
classification. We first provided some basic background in time
series analysis and the need to classify IoT traffic. We also
provided a mathematical background for TDA and discussed
how we chose our parameters for evaluation. Our results show
that, while traditional time series techniques perform well
for shorter periods of time, over a multi-month period TDA
outperforms those other methods.
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