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Main Idea

• Does solving the monolithic problem give improvements over explicit treatment of
a Robin condition?

• Well informed coupling scheme: Utilize Schur Complement of monolithic problem
to produce boundary conditions. Similar to variational flux recovery

1 Define interface-flux variable A with its own DOF space (could be either model's
or a 3rd set). No remapping necessary!

2 At each time step, isolate interface DOF's using Schur complement

3 Isolate and solve for A with second Schur complement

4 Back substitute A into interface systems to find fluxes on the interface for each
model (exact with respect to the data at the last time step).

5 Fluxes act as boundary conditions for interior evolution

6 Repeat
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Atmosphere—Ocean Coupling

• Abstract formulation of coupled model (Lemarie, et al. 2015)

• I- is Atmosphere—Ocean interface

• Linear operator G, flux function BC operator B, flux coupling Fao

dUa
— LaTa(Ua) = fa
dt

BaLla = ba

.Fa(Ua) = a(Ua — U0)

dU

dt

0
  L0Ta(Ua) = fo

Bo U0 = 130

.F0(U0) = a(U0 — Ua)

in f2a x [0, T]

on Of2a \ f x [0, T]

on I- x [0, T]

in Slo x [0, T]

on ac20 x [0, T]

on I- x [0, T]

• Bulk condition on interface with constant a

Ta(Ua) = To(U0) = a(Ua — U0) kaV Ua • n = —kaV Uo • n = U, — U0)

joi221,9 • More Generally: Strategy for a(x, t) clear, a(Ua, U0) not clear.



Weak Formulation
• Assume Dirichlet boundary conditions are satisfied on 8f2a \ I- and 8c20 (i.e

non r boundaries)
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• Introduce boundary flux variable X = .Fa(Ua) = .Fo(U0) = ce(Ua — U0)

• Test functions 'Oa E Va, E E

(Oa dija) 
dt 

(0.,LaTa(U.))00 = fa)%

dU0
+( YO, LoTo(U0))00 = (0o, fo)i-todt

in Qa x [0, T]

in Q0 x [0, T]

ct(Ua — Uo) — = o on I- x [0, T]

• Integration-by-parts

dUa

dt (Z'Oa, Ta(Ua))00 A)1- = (Oa, fa)% in Qa X [0, T]
na

dU0
00,  — (Z000,:f0(U0))c20 — 'Or = (00, f0)00

dt 00
in Q0 x [0, T]

a(Uo Uo) = 0 on I- x [0, T]



Discrete Problem

• Expand Ua, Uo, and A with trial functions

dUa
Ma — KaUa GIÀ = fa

dt
dUO

Mo  KoU0 — GTÄ = fo
dt

aGaUa — aG0U0 — MA = 0

• Explicit-Explicit time-stepping

Main AtGaTA = ga(14-1)

moug — AtGoTA = go(Ug-1)

aGaln — aGoUg — MA = 0

• RHS is
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Interface Problem: Explicit-Explicit Coupling
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• Separate DOFs on interior and interface

n-1
Ma,f 0

0 Mo,r

AtGa Ma,1-11

0

o mol
go r.

aGa —aGo

(

Mr 0 o

(Igo

0 0 Ma,0 0 ln,s1
g

0 Mo,or 0
go

M0,0 Kr2

s Interface System

(
A, j- 0 AtGI tn,r

ira/J_i

0 Ao,r —AtG1,- Ugr 
= it:

o

,T1
oGa —aGo Mr A

= 17r1 = g7r 
—1 

— mi,mmic12g71-21

• Schur Complement: solve for interface flux

A = S-1 
(crAtGrAZ/1gari,T1 

— aAtGoTAZilgio7r1)

S = (aAtGrArlGa aAtGOTA0-3r•Go — Mr)

i = a, o
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Explicit-Implicit Coupling

• Explicit-Implicit time-stepping

MaU; + AtGaTA = ga(14-1)

MOU'c; - AtKoUg - AtGIA = g-0-(Ug-1)

aG,I4 - occ,ug — Ma = 0
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• RHS is

)( Ma 0 AtG-ar Ur; i

0 Wo AtG-or lig = gT,"-1

aGo M A 

c

aGa \ 0 /

10-r-1) = Atf MUn-1 Wo = Mo - Att<0

• Separate DOFs Schur Complement Interface System

Ca,r
0

aGa

Ao,r

AtGr

—Atql;

rir
1ug- 1-

7C7r1

so,r
-aGo \ 0

—1 . —1
Aa,1- = Ma,1- 

Ma,ro.v..
a -2
.

.v.a,or r 7t= Wo,r - Wo,roWo c2Wo,or

n-1 n-1 1 n-1
ga,r = gar — Ma,r2"9,3fIgan

Ift,-1 —n-1
50,r = gor Wo,ro.v,,,0gon- 7



Advection-Diffusion Equations

• Advection in x direction, diffusion in y direction

• Denote a by 1 and o by 2

a(pi a &pi acp;

at
—
a 
ki— u — = fi in 1.2; x [0, 7] i = 1, 2

y ay ax

• Initial condition
cojx, y, 0) = coo(x, y) in f2; i = 1, 2

• Non-interface boundary conditions

• Bulk condition
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co; = g; on K2; i =1,2.

acol acp2 ,
kl  = k2 = awl — (P2) on I- .

ay ay



Test Case Setup

Atmosphere

r
Ocean

fil

Figure: Atmosphere-Ocean domain with interface F.

• Domain size (x, y) E [0, xm 1 v v 1az, max, maxj, with xmax = 10 km and
Ymax = 500 m. F is line y(x) = O.

• Method of manufactured solutions to give realistic test case

• Explicit — Explicit coupling
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Manufactured solution

• Manufactured solution: Oscillation
about some reference temperature

A
(Pi =  cos( Ahr(x — ut))(y—a)2+T

2/V7rk1

B
(P2 = 

N7C k2 
cos(Ahr(x — ut))(y+yma.)+T ,

• Forcing: f =  cos( A/71-(x — t)) 500

and f2 = 0 400

300

• Bulk conditions on y(x) = 0 demands 200

aA B A

b)

>.
100

0

Abr Abr 2Ahrkj Ahrk2
-200

• Implies that -300

-400

Aa
B

-500
aA = , a=

(a2  _L B
2k1 k2
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Parameters

• Maximum amplitude around T must be bounded.

Bymax
max ka2 T1 = Ahrk2 = M2 B = 

M2 NW k2

Ymax

2M1Ahrk1Aa2
maxl(Pt — 

T1 = 2Ahrk1= 

Ml 

<=> a = B

Parameter Value

T 293.15 K =20 °C
N
IJ

1
1000
2 m s-1

M1 2.0 °C

M2 0.5 °C

Ta ble: Model parameters for the simplified atmosphere-ocean test case

• kl and k2 have yet to be specified.
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Numerical Results

• Time Horizon: 2 minutes, time step: 0.05 sec, SUPG stabilization, consistent
mass matrices, linear Lagrange elements, forward Euler.

• Advection Dominated: h. = 2 x 10-3 and kJ. = 1 x 10-5

h, hy Rel. l lerrl IL2 Rel. lerrlH1
333 33.3 1.661e-01 4.101e-01
166 16.6 3.670e-02 2.019e-01
83.3 8.33 8.349e-03 1.011e-01

Rate - 2.136 0.997

• Medium Diffusion: h. = 2 and k1 = 1 x 10-1

h„ hy Rel. l lerrl I L2 Rel. IerrlHl
333 33.3 1.627e-01 3.937e-01
166 16.6 3.581e-02 2.005e-01
83.3 8.33 8.152e-03 1.O11e-01

Rate - 2.135 0.987
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Numerical Results

• Large Diffusion: k1 = 200 and k2 = 1

h„ hy Rel. l lerrl 2 Rel. lerrli-it

333 33.3 1.441e-01 3.876e-01
166 16.6 3.240e-02 2.003e-01
83.3 8.33 7.740e-03 1.011e-01

Rate - 2.065 0.986

• Convergence rates are reasonable
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Non Matching Grids

• Ocean grid is approximately 1.5 times finer

• Advection Dominated: k1 = 2 x 10-3 and k1 = 1 x 10-5

• Atmosphere is mortar side

h2, h1,y h2,„ h2, Rel. l lerrl l Lz Rel. lerrlHl

333 33.3 222 22.2 7.169e-02 2.737e-01
166 16.6 111 11.1 1.611e-02 1.365e-01
83.3 8.33 55.5 5.55 3.676e-03 6.837e-02

Rate — 2.131 0.997

mi Similar errors when ocean is mortar side

alt
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Comparison to Direct Flux Transfer

• Direct Method: Let A = ce(carl — 4-1)

■ Large Diffusion: k1 = 200 and k2 = 1

• Time Horizon: 1 hour, Time-step: 0.05

Method h1,„ hi , y Rel. l lerrl /2 Rel. lerrlHl
Direct 166 16.6 1.673e-02 8.192e-02
IFR 166 16.6 1.525e-02 7.962e-02
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Conclusions and Future Work

• Interface flux can be implicit solved for any combination of explicit or implicit
time integration. Heterogeneous time-integration

• Rigorous stability analysis required

• Extend to Primitive equations and FD-FV models.

• Extend to IMEX methods, multi-rate methods, and exploit horizontally-explicit
vertically-implicit type methods.

• Heterogeneous Asynchronous Time Integration methods (HATI)

• Typically, one must compromise between conservation or unconditional stability

• We want Conservative Heterogeneous Asynchronous Time Integration that is
Unconditionally Stable

CHATIUS
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