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ABSTRACT

In a typical optical test, a stereo camera pair has been required to measure the three-dimensional motion of a test article; one
camera can typically only measure motions in the image plane of the camera, and measurements in the out-of-plane direction
are missing. Finite element expansion techniques have provided a path to estimate responses from a test at unmeasured degrees
of freedom. Treating the case of a single camera as a measurement with unmeasured degrees of freedom, a finite element model
can be used to expand to the missing third dimension of the image data, allowing a full-field, three-dimensional measurement
to be obtained from a set of images from a single camera. The key to this technique relies on the mapping of finite element
deformations to image deformations, creating a set of mode shape images that can be used to filter the response in the image into
modal responses. These modal responses can then be applied to the finite element model to estimate physical responses at all
finite element model degrees of freedom. The mapping from finite element model to image is achieved using synthetic images
produced by a rendering software. The technique is applied first to a completely synthetic image set, and then is validated using
an experimental set of images.
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1 Introduction

Optical techniques are becoming popular due to the full-field, three-dimensional motions that they can obtain on the surfaces of
structures. Traditionally, when 3D motions are desired in a structural dynamics test, a stereo pair of cameras is required to obtain
the measurement. A single camera will only be able to identify motions in the image plane, and any motions perpendicular to
these directions will be missed. However, in many situations only one camera may be present during an event, but it would
be useful to be able to estimate 3D motions of a structure. Considering the example of a building during an earthquake: there
may be cameras throughout the city that have a view of this building, but very likely not a well-calibrated stereo pair. Still,
engineers will be interested in the deformations of that building to determine if any damage occurred, and if full 3D motion
could be extracted from a single camera view, it would increase the ability to surveil structures dramatically.

To supplement the lack of out-of-plane measurements in a single camera measurement system, knowledge of the physical
system can be used. If a plate is set in front of a single camera system and moved towards the camera, it will appear to grow
larger in the camera image; in this case, a single camera cannot distinguish between out-of-plane motion and expansion of the
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part. However, given knowledge of the test article, we can infer what these ambiguous motions typically mean. In the previous
example, a plate very rarely grows uniformly in size due to a typical structural dynamic loading; it seems much more reasonable
that the plate would be moving towards the camera. Applying knowledge of the physics of the test article in order to predict
unmeasured responses is precisely the goal of finite element expansion techniques. In these techniques, there is some set of
measured data, and, from that data, unmeasured degrees of freedom can be predicted using a model. This work, therefore,
aims to apply finite element expansion techniques, particularly the System-Equivalent Reduction Expansion Process (SEREP)
technique, to expand to full-field, three-dimensional motions from a set of images from a single camera.

2 Finite Element Expansion using the SEREP Technique

SEREP [1] as an expansion technique is essentially a spatial filter, using finite element shapes as the basis for the filter. Some
response xa on the part is measured at some a-set of degrees of freedom, and the responses are filtered by the finite element
mode shape matrix (Da partitioned to only those a-set degrees of freedom (using the pseudoinverse + to perform the filtering).
This results in coefficients q corresponding to a linear combination of the finite element shapes active in the measured response,
which can be multiplied by the full n-space finite element shapes On to recover estimates of responses in the full finite element
space xn.

q = ctcaFxa (1)

lin = Ong (2)

Combining these two equations gives the typical SEREP expansion equation

Xn = OnCICaFXn (3)

What is not obvious in equation (3) is that the a- or n-set degrees of freedom need not correspond to physical displacements,
they can instead correspond to any generalized degrees of freedom that correlate to the mode shapes. For example, in [2],
the authors use SEREP to expand from translation degrees of freedom to full-field strain derived from a linear combination of
strain shapes from the finite element model. In other words, if the same degrees of freedom that are measured during the test
can be extracted or derived from the finite element shapes, and these degrees of freedom define a unique linear combination of
shapes to reproduce those degrees of freedom, the SEREP technique can be used to expand those degrees of freedom to full
finite element space. Therefore, in order to use SEREP to expand to full-field, 3D deformations of the test article xn, the terms
on the right-hand side of equation (3) must be developed.

The Box Assembly with Removable Component (BARC) structure [3], shown in Figure la, will be used as a test structure for
this work. A finite element model was also created of the test article, shown in Figure lb, and will be used in the expansion
process. The finite element deformations for each mode shape can be used directly to populate columns of the On matrix.
The Oa degrees of freedom will require additional processing to compute, as they will depend on the xa degrees of freedom
measured by the image.

To define the xa degrees of freedom, a camera view of the test article was needed. Two Vision Research Phantom v2640 cameras
were set up to view the test article, each with a Zeiss Milvus 85 mm lens stopped to f/11. The resolution of the cameras was
set to 1536 x1920 pixels. The stereo camera setup was necessary to produce truth data against which to compare the expanded
data; to perform the expansion to 3D motions, only the images from the left camera were used. Figure 2 shows an example
test image. This image, or rather degrees of freedom extracted from it using image processing techniques, will represent the xa
degrees of freedom. The final part of the equation, Oa, is obtained by transforming the finite element displacements into image
degrees of freedom. This is an involved process that is described in Section 3.

3 Creating Synthetic Images using a Finite Element Model

The previous section states that in order to expand from a measured a-set of degrees of freedom using SEREP, those same
a-set degrees of freedom must be extracted from the finite element model for each mode. Therefore to expand from arbitrary
image degrees of freedom, ideally each of the finite element shapes should be reproduced on-image so that the same degrees of
freedom can be extracted. This process involves determining the intrinsic and extrinsic camera parameters in the finite element
coordinate system, mapping the image texture to the finite element model, deforming the finite element model into a mode
shape, and then rendering an image of each shape. This is performed using the process developed in [4] using the open-source
Blender software [5] to render the final deformed images. Assuming the synthetic mode shape images are produced accurately,



(a) BARC structure set up for optical testing. (b) BARC finite element model.

Figure 1: BARC test article and finite element model.
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Figure 2: Representative response image from the test.



the processing performed on the response images (e.g. digital image correlation (DIC), phase based processing, point/feature
tracking, etc.) can be performed identically on the synthetic images to produce degrees of freedom that can be directly used to
perform the expansion in equation (3).

3.1 Preparing the Finite Element Model

The first step in this process is to prepare the finite element model, which will need to be imported into the Blender software.
The Blender software uses surface meshes to model geometry, so the volumetric finite element mesh needs to be "skinned"
to produce a surface mesh. This can be performed by creating a list of all faces of all volumetric elements in the model, and
removing any face that appears twice: exterior faces will only appear in one volume element, whereas internal faces will always
appear in two. These faces are used to create a connectivity array that can be assembled in Blender using its Python interface.

3.2 Camera Setup

Once the finite element model is loaded into Blender, a camera must be placed so that there is a view point from which to render
the scene. Blender uses a pinhole camera model that is widely used in computer graphics applications, where the equation that
projects three-dimensional spatial xyz coordinates into the two-dimensional image uv coordinates is

Cu

cv = [K][R
c

t]

x

y
z
1

(4)

Note that equation (4) is constructed using homogeneous coordinates, so the left hand side may be scaled by an arbitrary factor
c, which is the last row of the resulting vector. By dividing the first and second rows of the left hand side by c (i.e. scaling the
vector so the last row is 1) allows recovery of the image coordinates u and v.

Here, [K] is a 3 x 3 matrix of camera intrinsic parameters, which can be developed from physical camera parameters as

[K] =

Pufmm

SSu,mm
s (1/2 — su)P'u

pvfmm (1/2 — sv)PvSSv,mm
0 0 1

(5)

where pu and p, are the image resolution in pixels in the u and v dimensions, respectively, ssu,„,„, and ssv,„,„, are the camera
sensor size in millimeters in the u and v dimensions, respectively, su and sv are the normalized camera shift values in fraction of
the image in the u and v dimensions, respectively, and fun., is the lens focal length in millimeters. All of these camera parameters
can be specified for each camera in the Blender software. Some camera calibration routines will return a camera skew s or a
separate focal length fun, for each of the u and v directions; however Blender's camera model cannot handle these parameters.
If a significant skew or difference in focal length between dimensions is needed for the camera and lens combination used in
the test, these distortions can be applied via postprocessing the output images from Blender.

[Rlt] is a 3 x 4 matrix of extrinsic camera parameters. The left partition [R] is a 3 x 3 rotation matrix, and the right partition [t] is
a 3 x 1 vector of translations. These transformations take vectors specified in the global (finite element) coordinate system and
transform them into the local camera coordinate system where the camera z direction is defined as the view axis of the camera.
However, in Blender the camera rotation and position in the global coordinate system need to be specified. One important detail
is that the local z directions of camera objects in Blender point opposite of the view axis, so an additional rotation [R]c must be
specified that performs a 180 degree rotation about the local camera x axis.

1 0 0
[R], = 0 —1 0 (6)

0 0 —1

[R]b = [MT [MC (7)

[t]b = —[R]b[R]e [t] (8)



Figure 3: Representative calibration image showing showing dot grid calibration target.

The matrices [R]b and [t] b are then the orientation and position of the camera in the Blender software. The orientation of an
object must be specified using Quaternions or Euler Angles, so the orientation matrix [R] b must be transformed into one of
those forms.

Ideally, the camera created within Blender will be identical to the actual camera used in the test. In this case, we need to
compute the [K] and [R It] matrices of that camera. The intrinsic parameters of the test camera can be derived using a standard
camera calibration that is common in DIC: a calibration target with a dot grid with known spacing is translated and rotated
in front of the camera while a series of images are captured. Figure 3 shows a representative calibration image used for this
test. The VIC3D software was used to perform the calibration, and the [K] matrix was constructed from its output. Lens
distortion parameters are also obtained from the calibration procedure. While Blender's pinhole camera model does not include
distortions, the Open Computer Vision (OpenCV) [6] library has functions that can be used to remove distortion from test
images to ensure that they are consistent with Blender's output.

For a stereo DIC setup, the camera calibration described above will typically also provide extrinsic camera parameters as well;
however, with only one camera only the intrinsic parameters can be derived, and a separate approach is required to compute the
camera pose. Here the Efficient Perspective-n-Point (EPnP) algorithm [7] is used, as implemented in the OpenCV library [6].
The EPnP algorithm takes as its inputs the camera intrinsic matrix [K] and distortion parameters, as well as a series of point
pairs in the image and spatial domains. Table 1 shows the point pairs used for this pose estimation. The output of the algorithm
is the orientation and position of the camera, from which the matrix [R1t] can be derived. To check the accuracy of the complete
camera projection, the 3D coordinates in Table 1 can be passed through equation (4) to produce estimated pixel locations. These
can be compared to the 2D image locations in Table 1. In this case, the average error was 2.5 pixels, which is approximately
0.01 inch or 0.3 mm.

Once the intrinsic and extrinsic camera matrices are determined, a camera can be created in the Blender software using physical
camera parameters from equations (5) and (7)—(8). A render of the finite element model from this camera compared to the test
image appears in Figure 4.



(a) Test Image

Table 1: Point pairs used in the EPnP algorithm

Image Position
u (px) v (px)

Spatial Position
x (in) y (in) z (in)

201 74 2.5 2.128 -0.5
1220 105 -2.5 2.128 -0.5
136 523 2.99 0.0 -1.5
1398 536 -2.99 0.0 -1.5
137 1860 2.99 -5.98 -1.5
1395 1814 -2.99 -5.98 -1.5

(b) Finite Element Model

Figure 4: Comparison of test image and finite element model projected to test image.



(a) Test Image
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(b) Finite Element Model

Figure 5: Comparison of test image and finite element model projected to test image.

3.3 Local Texture and Lighting

The next step to matching the test images is to apply a texture to the finite element model. This texture will be mapped to
the undeformed finite element model; when the model is deformed, the texture will deform with it. If tracking subsets using
DIC, it is not strictly necessary to reproduce the exact image from the test on the finite element model as long as the subset
locations are chosen identically. However, for other optical techniques such as feature tracking, marker tracking, or phase-
based processing, it will be necessary to have identical local contrast patterns to ensure the same degrees of freedom are being
measured. Therefore, this work will proceed with mapping the test image onto the finite element model.

The general problem of texture mapping in computer graphics involves the mapping of a 2D image to a 3D model. One common
approach, known as UV mapping in computer graphics applications, involves "unwrappine or projecting the 3D mesh to 2D
(u, v) image coordinates. Each face of the geometry mesh is mapped to a portion of the image, which is applied to the 3D mesh
during the render. Note that the projection from 3D model to test image space is already defined from the camera projection
developed in Section 3.2, so if the texture to be applied to the finite element model is the test image itself, the UV mapping
is already defined. Blender can perform this entire process in a few mouse clicks; the test reference image is loaded into the
software as a new material and assigned to the geometry, the view in the software is set to the camera view, and the model is
unwrapped via projecting from the current view.

The texture of the object is only half of what determines its final appearance in a render. The other half is the lighting applied
to the texture. One may be tempted to try to reproduce the lighting that was used in the test, perhaps using spotlights positioned
in approximately the same places pointing at the test article; however, this should not be done. The lighting, shadows, and
specularities in the test image have already been embedded into the texture applied to the model, therefore only a flat-white,
uniform light is required. This is achieved via environmental lighting in the Blender software. Note that depending on which
render engine is being used in the Blender software, the background color of the render may also change with the applied
environment lighting, so it may be necessary to put a flat-black plane behind the test article in the blender scene to accurately
reproduce the image. Figure 5 shows a comparison between the test image and the rendered textured finite element image.



(a) Mode 7 (b) Mode 8 (c) Mode 9

Figure 6: Synthetic images created from deforming mode shapes. Note that the deformations are scaled 100 x compared to the
single-pixel images used in the analysis in order to make them visible to the reader.

3.4 Deforming and Rendering Images

With the finite element mesh textured, it can be arbitrarily deformed within the scene and images can be rendered of those
deformations. One choice that must be made is at what scale to render the mode shapes in the images. If the rendered
displacements are too small, the image degrees of freedom may be noisy, which could result in a poor inversion in equation (3).
However, if displacements are too large, image processing techniques could break down. At large deflections, hidden surfaces
may be revealed, and because the texture was applied from the test image, surfaces that are not visible in the test image will not
be textured correctly. Also, for subset or feature/marker tracking approaches, the tracked set of pixels may become distorted
due to large rotations or shearing. A peak displacement of 0.5 pixels was therefore chosen, which resulted in a different scaling
factor for each mode of the system (see Section 5 for a comparison of results using different peak displacement values). To
determine each mode's scaling factor, the undeformed and deformed 3D coordinates of the finite element model were passed
through equation (4), resulting in pixel locations corresponding to the undeformed and deformed model for each mode shape.
Subtracting the deformed from the undeformed pixel locations gives pixel displacements for each shape. The mode shape was
then scaled by the reciprocal of the maximum pixel displacement times the desired maximum pixel displacement. Note that
equation (4) is not linear due to the normalization that must occur in the third row of the equations to maintain the homogeneous
coordinates. Therefore, in order for this approach to work, the mode shapes were first scaled to a small value in order to generate
an approximately linear relationship between 3D and image displacements, then scaled to the linear value. Figure 6 shows the
first three elastic modes of the finite element model; these are rendered with deformations set to 100 x the deformation used in
the analysis to ensure the deformations are visible to the reader.

4 Choosing Image Degrees of Freedom

Once the finite element shapes have been rendered, degrees of freedom from the image must be selected. Ideally these degrees
of freedom will result in linearly independent columns of the (13, matrix so the pseudoinverse in equation (3) can be accurately
performed. In this case, DIC subset displacements were chosen as the degrees of freedom to correlate. Because only one camera
image is available, 2D DIC is performed, resulting in u and v displacements in pixels for each subset solved. The open-source
Digital Image Correlation Engine (DICe) software [8] was used to perform the DIC analysis. Areas of interest were defined
on the speckle pattern as shown in Figure 7. Subset and step sizes of 21 and 20 pixels were used for the analysis. The shape
functions used in the correlation allowed for translation, rotation, normal stretch, and shear stretch. These parameters resulted
in 814 subsets solved with two degrees of freedom per subset for each of the rendered mode shape images. The first 26 modes
(up to 3,000 Hz) were solved, which included the six rigid body modes. Figure 9 shows the subset displacements for each
mode, scaled so they are visible. A Modal Assurance Criteron (MAC) [9] matrix is shown in Figure 8. The 1628 x 26 Oa matrix
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Figure 8: AutoMAC of the Oa matrix.

Figure 7: Areas of Interest defined in DICe.
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(a) Analytic deformation image scaled 50x so the deformations are
visible to the reader.
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(b) Solved subset displacements for the synthetic deformation.

Figure 10: Analytic deformations on which the technique will be validated.

5 Application to Synthetic Deformation

To demonstrate the technique on perfect data, a synthetic deformation image was created using a random linear combination
of modal coefficients q for the first 20 modes, sampled from a uniform distribution between -0.3 and 0.3. These coefficients
were multiplied by unit-pixel scaled mode shapes to produce deflections that would be on the order of 0.3 pixels per mode. The
synthetic deformation was then created by summing these shapes. Figure 10 shows the analytic displacement, with Figure 10a
showing the synthetic render of the deformations at 50x scale and figure 10b showing the solved subset displacements on the
image. These subsets were identical to the subsets used in Section 3.4.

The deformed subset displacements from the analytic deflection image (Figure 10b) and the subset displacement "shapes" (Fig-
ure 9) were passed into equation (1) to solve for the shape coefficients in the displacement. Note that 26 modes were used to
predict the response, even though only the first 20 modes were used to create the analytic deflection shape, so the predicted
coefficients for the last 6 modes were expected to be zero. These predicted coefficients could be compared directly to the pre-
scribed modal coefficients used to create the deflection image. This comparison is shown in Figure 11. The true displacements
could then be compared to the prescribed displacements by passing the prescribed and estimated modal coefficients q through
equation (2) to predict full-field response. This comparison is shown in Figure 12.

The responses were predicted accurately. The treating coefficients q as a vector, the magnitude of the error vector was computed
to be 0.058, which was 5.8% of the magnitude of the displacement vector, 0.996. For responses, the magnitude of the error
vector was only 3.0% of the magnitude of the response vector, and as seen in Figure 12, the majority of the error is located at
points far from the surfaces where the subsets were solved. This gave confidence that the technique would be able to be applied
to experimental data.

Because the analytical deformations applied during this analysis were known, it allowed the processing parameters to be inves-
tigated to determine which might provide a better estimate of the modal coefficients, and in turn the 3D displacements. The
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Table 2: Magnitude of the Modal Coefficient Error Vector for given maximum pixel displacement values.

Pixel Displacement Error Magnitude
3 0.1252
1 0.0725

0.5 0.0580
0.25 0.1422
0.125 0.2010

maximum pixel displacement of the mode shape images was of interest as it had been selected using intuition as discussed in
Section 3.4. Mode shape images were rendered at maximum deflections of 3, 1, 0.5, 0.25, and 0.125 pixel. Table 2 shows the
magnitude of the error over these maximum pixel displacement values. A maximum mode shape pixel displacement of 0.5 was
found to give the lowest error of the values investigated, so it was used to extract 3D motions from the test data.

6 Experimental Results

Given the favorable results using synthetic deformation images, the process was validated using experimental data. The BARC
structure was excited with a flat-force pseudorandom input at 1 lb RMS from 100 to 2000 Hz. The flat-force input was created
by measuring the excitation force to amplifier input voltage transfer function of the shaker in the test configuration and playing
in a shaped voltage spectrum that would produce a flat force using the arbitrary source capabilities of the B+K LAN-XI data
acquistion system used to collect the accelerometer and force data (note that none of these sensors were used for the expansion;
these were only applied as diagnostics). The cameras were run at 4096 frames per second with an exposure time of 50 its to
acquire test images. 4096 images were acquired per measurement frame and 10 frames were acquired that could be averaged.
Image averaging was able to be performed because the input excitation force was repeated identically for each frame once the
start-up transients had died away. This reduced the total number of images from 40960 to 4096.

The identical processing that was applied in Section 5 was then applied to the left camera images from the experiment. 2D DIC
was performed on the subsets from Section 3.4 for each time step to extract uv displacements for each subset at each time step.
Because the pseudorandom excitation only excited the test article above 100 Hz, a 100 Hz 4th-order high-pass Butterworth filter
was applied to the subset displacements with the goal of reducing erroneous signals due to heat waves or other low-frequency
optical distortions. The temporally-filtered subset displacements were then spatially filtered using the finite element shape
subset displacements to extract a set of modal coefficients q at each time step, per equation (1). These coefficients were then
multiplied by the full finite element model shapes to produce full-field, 3D motions at each time step.

60 locations were selected to compare expanded results to truth data from the stereo DIC. At each location and for each coordi-
nate direction the Time Response Assurance Criterion (TRAC) [10] and Frequency Response Assurance Criterion (FRAC) [11]
were computed to compare the time responses and frequency spectra of the expanded and truth signals. The TRAC and FRAC
are generalizations of the MAC using deflection shapes at each time step or frequency line rather than mode shapes to perform
the correlation. Figure 13 shows the locations of each of these comparison points, and Figures 14 and 15 show the TRAC and
FRAC values for all measurement locations for the x, y, and z directions. Figure 13 shows a triad that defines these directions.
Note that the x and y directions were most closely aligned with the image plane of the camera, and the z direction is oriented
primarily out of the image plane. Figure 16 shows time and frequency response comparison of the worst correlation, and Figure
17 shows the same comparison of the best correlation.

7 Discussion

While the data shown in Section 6 showed good agreement between truth and expanded signals, there were distinct areas where
the process struggled to match well. This section discusses some of those issues and potential remedies.

7.1 SEREP Expansion

For all checked locations, motion in the x and y directions showed very good agreement between the expanded and truth data.
This was expected, as these degrees of freedom correspond most closely with the subset displacements used to perform the
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expansion. The z-direction responses were not predicted as accurately. Figure 13 shows the expansion struggled most on the
vertical portions of the "box" portion of the test article. Predictions on the component mounted to the box were much more
accurate. While a FRAC or TRAC value of less than 0 5 may seem like terrible correlation, examination of the time and
frequency responses of the worst points does not paint as bleak of a picture. The majority of the frequency band seems to be
accurately predicted, with the main sources of error coming from the frequency band between 1,050 and 1,100 Hz and to a
lesser extent the frequency band around 250 Hz. Typically when specific modes are being missed by the SEREP technique,
it means that the finite element modes are not accurate representations of the true structure modes and therefore do not form
adequate interpolation functions between the measured data to estimate unmeasured response, or there are unneeded modes or
insufficient degrees of freedom in the expansion, and the experimental data is being overfit. While SEREP typically provides
some degree of smoothing of experimental errors due to the least-squares fit, if too many modes or insufficient degrees of
freedom are used in the expansion the experimental errors will be fit by the least-squares solution. While the expansion will
still match the measured data well (it will likely be a better match to the raw measured data due to the lack of any smoothing),
measurement points far from the collected data will likely not be predicted well.

To investigate this effect, the truth data was combined with force and accelerometer diagnostic measurements, and modes
were fit to the data. This resulted in 13 experimental elastic shapes. Two SEREP case studies were performed to estimate the
adequacy of the degrees of freedom used in the expansion. In the first case, the experimental mode shapes were filtered by the
finite element mode shapes per equation (1) using all image and accelerometer degees of freedom to create a set of coefficient
vectors that represented the linear combination of finite element shapes to produce each experimental shape. Because the
accelerometers are spread evenly over the part, this set of coefficients is thought to represent the true linear combination of
finite element shapes to create each experimental shape, and they are shown in Figure 18a. Note that for each experimental
mode, there is primarily one finite element mode that directly corresponds to it with smaller amounts of other modes also
included to handle the small differences between the finite element model and test.

In the second case, the accelerometer degrees of freedom were not used in the expansion; instead only the image degrees of
freedom were used on the front surfaces of the part. For the most part, the modal coefficients in this case are similar to the
truth case; however, the coefficients to reproduce mode 9 have changed significantly. The main contribution to experimental
mode 9 from finite element mode 16 has dropped from nearly 1 to less than 0.8, and several other modes are now contributing
significantly to the shape. Mode 8 shows similar changes though they are not as drastic. When the coefficients to reproduce
mode 9 are multiplied by the finite element shape matrix, the points far from the imaged surface no longer agree with the
accelerometer data measured in the test. This indicates that the degrees of freedom measured are likely insufficient to accurately
expand modes 8 and 9. These modes, which have natural frequencies at 1,058 and 1,123 Hz, are likely the reason that poor
expansion was obtained in the z direction in the 1,050-1,100 Hz frequency band.

7.2 View Angles and Camera Lenses

This process attempts to re-create 3D motion from 2D motion using a finite element model to fill in the missing degrees of
freedom. This transformation relies on perspective to create motion when the part is moving towards or away from the cameras.
Perspective effects will be largest with the test article closer to the camera with a wide angle lens. As the lens focal length
increases the view angle decreases, so for a given translation towards the camera the relative enlargement of the part's image
on the camera sensor will be smaller. In the limit that the focal length goes to infinity (e.g. an orthographic view which can
be achieved using a telecentric lens), there is zero enlargement due to perspective. It is clear that this expansion process would
break down in such a case, as at least one of the translation rigid body modes would be indistinguishable from the linear
combination of the other two. Given this argument, if this work were to be repeated, the authors would investigate using a
wider angle lens than the 85 mm lenses used in this proof-of-concept. Additionally, given the fact that motions in the x and y
directions were extracted nearly perfectly but the motion in the z direction was less accurate, the authors would try using a view
that was more oblique to the part xy plane so there would be a larger z component in the image plane. Note that the proximity of
the part to the camera may be limited by the minimum focusing distance of a given lens. It may also be limited by the required
depth of field, which for a given aperture will become narrower as the part moves closer to the camera.

7.3 Optical Errors due to Heat Waves

This technique uses finite element shapes as a basis for expanding measured data. It assumes that all the measured motions
fall within those shapes; however, there are some issues that may arise in optical testing that could make it so the measured
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Figure 18: Comparison of Modal Coefficients using accelerometer and image degrees of freedom (a) and only image degrees
of freedom (b). Note the change in composition of experimental mode 9.

shapes do not fall within the finite element shapes. Heat waves are a well-known phenomenon in DIC analysis often active
at temporal frequencies below 100 Hz [12], and these can distort a given measurement shape. These distorted shapes will not
likely be found within the finite element model, so the expansion process suffers greatly. Initially, no high-pass temporal filter
was applied to the data, and very poor results were obtained from the expansion. Once the high-pass filter was added, which
removed the effect of the heat waves, the data matched much better to the truth data.

7.4 Multi-view Analysis

One final point of discussion is the applicability of multiple views to this technique. As noted in Section 7.1, having all
degrees of freedom on one or a few surfaces may not be sufficient to expand to motions on the entire part. However, if another
camera could be used to view additional degrees of freedom, synthetic finite element images could be created and 2D subset
displacements could be extracted from that view as well. These additional degrees of freedom could simply be appended to
equation (1) as extra rows of the (Da and xa matrices, and the modal coefficients q could be found for both views simultaneously.
The addition of one or more extra views could significantly improve the expansion process.

8 Conclusions

This paper introduced a technique to extract 3D motions from a set of images from a single camera using finite element
expansion techniques to estimate the out-of-plane displacements that have traditionally been considered missing from a single
camera test. This technique utilized the SEREP technique to perform the expansion, creating synthetic finite element images
from which arbitrary image degrees of freedom could be extracted. The synthetic finite element images were created such
that they matched both the camera viewpoint as well as the local texture of the part. Because the synthetic images matched
the test images, identical image processing techniques could be performed on the test and finite element images, meaning
identical degrees of freedom could be produced with which the filtering could be performed. The technique was first tested
using a synthetic deformation image, which was produced using a randomized set of modal coefficients. These coefficients



were accurately reproduced by the expansion technique, so the prescribed 3D displacements were accurately estimated by the
technique. The technique was then applied to an experimental dataset, and compared to truth data obtained using stereo digital
image correlation. Very good agreement was found in the x and y directions, which corresponded closely to the image plane
directions. The z-direction motions were reasonably predicted, but larger errors were found in some frequency bands. Overall,
this technique seems to have been successful in predicting 3D motions from a single set of 2D images. Future work will involve
applying this technique to radiographic images, where degrees of freedom extracted from an image will not be limited to visible
surfaces.
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