
Nonlinear Analysis Product
Area Update

Roger Pawlowski

Trilinos User Group Meeting

October 22nd, 2019
Albuquerque, NM

1

_EN 411•
• • m•••••••• Of

ENERGY NeSA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-12912C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

2 I The Team

• Roscoe Bartlett

• Sidafa Conde

• Drew Koury

• Sean Miller

• Curtis Ober

• Roger Pawlowski

• Mauro Perego

• Eric Phipps

• Denis Ridzal

• Nate Roberts

• Andrew Steyer

• Irina Tezaur

• Greg von Winckel

3 Nonlinear Analysis Product

Package

NOX

LOCA

ROL

Tempus

Rythmos

Sacado

Stokhos

PIRO

Thyra

Description Contact

Globalized Nonlinear

Bifurcation/Stability
Analysis

Optimization

Pawlowski

Phipps

Ridzal

Time Integration Ober

Time Integration Ober

Automatic Differentiation

Ensemble Propagation

Phipps

Phipps

Maintenance (minor dev)

Maintenance (minor dev)

Active development

Active development

Deprecated (use Tempus)

Active development

Active development

Black-box (ME) Abstractions Tezaur, Perego Maintenance (minor dev)

I nterface Abstractions Bartlett Active development

Sacado: AD Tools for C++ Applications

Automatic differentiation (AD) package
• Compute analytic derivatives in simulation codes without hand-coding

• Relies on chain-rule and known derivatives of all elementary operations

Operator overloading-based approach
C++ data types storing values and derivatives

• Type of variables in code replaced by AD data type

• Mathematical operations replaced by overloaded
versions implementing chain-rule

• Expression templates reduce overhead

New for 2019: new data type/expression template design in
Sacado::Fad::Exp namespace
• Leverage modern C++11 features to simplify expression template

design

• Enable efficient optimization of expression-template evaluations,
particularly for nested data types (e.g., higher derivatives, Sacado+SIMD
types)

• Will become the default in the coming months

• Can try yourself using Exp namespace or configuring with
-DSacado_NEW_FAD_DESIGN_IS_DEFAULT:BOOL=ON

BVEC
6 4-65e-02
4 849e-02
3.232e- 2
1 616e- 2
0 000e+ 0

lso-velocity adjoint surface for fluid flow in a 3D steady MHD
generator in Drekar computed via Sacado (Courtesy of T.
Wildey)

http://trilinos.org

1

5 Tempus Capabilities

• Many Steppers

o Implicit and Explicit, e.g., Forward/Backward Euler, BDF2 and Trapezoidal.

o Runge-Kutta methods, e.g., Explict RK, DIRK and IMEX-RK.

o 2nd Order ODEs, e.g., Leapfrog, Newmark-f3 and HHT-a.

o Stepper-of-Steppers, e.g., lst Order Operator Splitting and Subcycling.

• Runge-Kutta Embedded Error Analysis
o Variable time-step error controller, e.g., I, PI and PID.

o Bogacki-Shampine 3(2) Pair, Merson 4(5) Pair and SDIRK 2(1) Pair.

• Sensitivity Analysis

o Transient forward/adjoint sensitivities.

o Enables efficient large-scale optimization and UQ.

• Utilization by several applications

10

105

103

110'

10'

103

105

o_
a)

a)

Tempus Convergence of E-Field

1 st order

2nd order

3rd order

4th order

4th order

5th order

Reterence slopes
............„7„......----E EMPIRE - BE

—at— Backward Euler

—y— lrnplicit Midpoint

-IP- SDIRK L-Stable 2nd order
-4- SDIRK A-Stable 4th order
-0- SDIRK 2 Stage 3rd order
-0- SDIRK 5 Stage Oth order
—0— SDIRK 5 Stage 5th order

II

dt

Van der Pol Problem

10-1°

175

o Albany/LCM — Enabled Schwarz Alternating Method for Dynamic Multiscale Coupling

o SPARC — Improved RK method and embedded estimator to run near the stability limit (max time step).

o Drekar — Developed and using Embedded Error Analysis

o EMPIRE — Incorporated into suite and have demonstrated verification.

6 Tempus New Features
• Subcycling Stepper (i.e., Stepper-of-Steppers)
o Ability to subcycle one operator in a operator-split scheme, e.g., explicit fast physics.
o Has all the basic capabilities of IntegratorBasic, e.g., constant/variable time stepping and error control.
o Can use any Stepper as the subcycling stepper, e.g., implicit/explicit, RK methods, and even Stepper-of-Steppers.

• "New and Improved" Stepper Constructors
o Basic default constructors provide default settings, which can be reset, and only requires a ModelEvaluator.
o Full specification constructors provide applications ability to set all the steppers parameters.
o Still have ParameterList construction through the StepperFactory.

• Added methods to make the initial conditions (ICs) consistent.
o Ensure the solution, x, ic and .k, satisfies the governing equation at ICs, e.g., f (x, ic, .5e,t = 0) = O.
o Ability to do "nothing", "zero" ICs, use application's ICs or solve for "consistent" ICs.
o Important for DAEs to obtain the correct solution.

• Added First-Step-As-Last (FSAL) principle.
o Some steppers can use the last evaluation from previous time step as the first evaluation this time step.
o Saves the cost of the first evaluation.

o Have the ability to turn off, e.g., FSAL does not generally work with operator-splitting.

• Many minor improvements
o Solution output after "passing output time" and not change timestep to hit output time.
o Many accessors to member data.
o Miscellaneous bug and warning fixes.

7 PIRO

• Unifies top level packages (NOX, Tempus,
Rythmos, LOCA, ROL) into a single interface
(Model Evaluator)

• Current customers: Albany, Charon, Drekar and
Panzer

• FY19 Development:

• Added observer to monitor changes to optimization
parameters (on branch)

• Support for sim-opt interface to ROL (on branch)

• FY20 Plans:

• Adjoint support for PIRO/Tempus wrapper for
land ice project

1:::9 Epee:: :J
• .

O

8 I RO L

• Dynamic optimization interface

1. Problem definition at time-step level through DynamicObjective and DynamicConstraint.

2. Improved adjoint interface for Tempus (discussed at 2018 TUG).

3. New parallel-in-time optimization capabilities (DITTO-X LDRD).

4. Randomized sketching to reduce memory footprint of state storage.

• Optimal experimental design (OED)

1. New capabilities for various conventional optimality measures (A, I, D optimality).

2. New methods for risk-based design of experiments.

• Optimization vectors as template parameters

1. ROL classes are now templated on vector types.

2. Enabling fast optimization algorithms on advanced architectures, such as GPUs.

• Python interface through PyROL

9 I Teuchos Stacked Timer

• Added two years ago as an alternative to TimeMonitor

• Preferred by application developers (wanted explicit start/stop)

• Disambiguates multiple uses of same object

• Not exception safe (will not stop a timer when unrolling the stack)

• In TeuchosComm subpackage

• Developer recommendation:

• Don't use in trilinos libraries, continue to use TimeMonitor

• Project consistency and exception safety

• TimeMonitor automatically dumps into StackedTimer.
0 Can disable with configure flag:

Teuchos_ENABLE_STACKED_TIMER_IN_TIME_MONITOR=OFF

10 I Teuchos Stacked Timer

Panzer MixedPoisson Test: 4.39393 [1]
Mixed Poisson: 4.39382 - 99.9976% [1]
panzen:CubellexMeshFactory::buildUncomittedMesh0: 0.000528984 - 0.0120393% [1]
panzen:CubellexMeshFactory::completeMeshConstruction0: 0.765863 - 17.4305% [1]
panzen:DOFManagerFactory::buildUnqueGlobalIndexer: 0.0451156 - 1.0268% [1]

• •

Ifpack2::Relaxation::initialize: 4.403e-06 - 0.000100209% [1]
Ifpack2::Relaxation::compute: 0.00249703 - 0.0568305% [1]
Belos: Operation Op*x: 0.00338377 - 0.0770121% [1]
Belos: PseudoBlockGmresSolMgr total solve time: 0.432027 - 9.83259% [1]
Belos: ICGS[2]: Orthogonalization: 0.0212883 - 4.92755% [31]
l Belos: ICGS[2]: Ortho (Norm): 0.000489003 - 2.29705% [31]
l Belos: ICGS[2]: Ortho (Inner Product): 0.00904903 - 42.507% [60]
l Belos: ICGS[2]: Ortho (Update): 0.00662776 - 31.1333% [60]
l Remainder: 0.00512255 - 24.0627%
Belos: Operation Prec*x: 0.0420421 - 9.73136% [31]
l Ifpack2::Relaxation::apply: 0.0418983 - 99.658% [31]
l Remainder: 0.000143774 - 0.341977%
Belos: Operation Op*x: 0.104452 - 24.1772% [31]
Remainder: 0.264244 - 61.1639%

11 I Some Useful Features
• Many output options: time, percentage, mpi min, max average, binned mpi distributions, remainders, print depth,

output formats

Default:

TM:Interoperability: 5.18814 [1] <2, 0, 2>
Total Time: 5.18813 - 99.9996% [1] <2, 0, 2>

Assembly: 2.08128 - 40.1163% [10] <1, 1, 2>

I Diffusion Term: 0.278306 - 13.3719% [10] <1, 2, 1>

I Reaction Term: 0.779077 - 37.4326% [10] <2, 0, 2>
1 Remainder: 1.0239 - 49.1955%
Solve: 2.08407 - 40.1699% [10] <1, 1, 2>
1 Prec: 0.520275 - 24.9644% [10] <2, 0, 2>

I GMRES: 0.539632 - 25.8932% [10] <1, 0, 3>
1 Remainder: 1.02416 - 49.1423%
Remainder: 1.02278 - 19.7138%

Remainder: 1.95e-05 - 0.000375857%

Aligned columns:
TM:Interoperability:

Total Time:
Assembly:
1 Diffusion Term:
1 Reaction Term:
1 Remainder:
Solve:
1 Prec:

GMRES:
Remainder:

Remainder:
emainder:

5.18814
5.18813
2.08128
0.278306
0.779077
1.0239
2.08407
0.520275
0.539632
1.02416
1.02278
1.95e-05

- 99.9996%
- 40.1163%
- 13.3719%
- 37.4326%
- 49.1955%
- 40.1699%
- 24.9644%
- 25.8932%
- 49.1423%
- 19.7138%
- 0.000375857%

[10]
[10]
[10]

<2,
<2,

0,
0,

2>
2>

<1, 1, 2>
<1, 2, 1>
<2, 0, 2>

<1, 1, 2>
<2, 0, 2>
<1, 0, 3>

Aligned columns, labels on right:

5.18814
5.18813
2.08128
0.278306
0.779077
1.0239
2.08407
0.520275
0.539632
1.02416
1.02278
1.95e-05

- 99.9996%
- 40.1163%
- 13.3719%
- 37.4326%
- 49.1955%
- 40.1699%
- 24.9644%
- 25.8932%
- 49.1423%
- 19.7138%
- 0.000375857%

[10]
[10]
[10]

<2,
<2,
<1,
<1,
<2,

<1,
<2,
<1,

0, 2> TM:Interoperability:
0, 2> Total Time:
1, 2> Assembly:
2, 1> 1 Diffusion Term:
0, 2> 1 Reaction Term:

1 Remainder:
1, 2> Solve:
0, 2> 1 Prec:
0, 3> GMRES:

Remainder:
Remainder:

emainder:

Alternative: Nate Roberts has a
python parser for stacked timer
output parsing.

1 2 Some Useful Features
My New Timer: 2.11147 [1]

Total Time: 2.11147 [1]
Assembly: 1.03913 [10]
Solve: 1.0723 [10]

Prec: 0.53726 [10]
Rank 0 ONLY: 0.535003 [10]
Not Rank 0: 0.53467 [10]
Remainder: -0.534634

Remainder: 3.7e-05
Remainder: 1.25e-06

Printing aligned_column
My New Timer:

with
2.11147

otal Time: 2.11147
Assembly: 1.03913
Solve: 1.0723
I Prec: 0.53726
I Rank 0 ONLY: 0.535003
I Not Rank 0: 0.53467 -
I Remainder: -0.534634 -
Remainder: 3.7e-05 -

emainder: 1.25e-06 -

timers names on

99.9999%
49.2138%
50.7845%
50.1036%
49.8931%
49.8621%
-49.8588%
0.00175233%
5.92005e-05%

options.print_names_before_values = true == true

Printing
2.11147
2.11147
1.03913
1.0723
0.53726 -
0.535003 -
0.53467 -
-0.534634 -
3.7e-05 -
1.25e-06 -

aligned_column with timers names on
[1] (0) {min=2.11141 ,

99.9999% [1] (0) {min=2.11141 ,
49.2138% [10] (0) {min=1.03894 ,
50.7845% [10] (0) {min=1.07217
50.1036% [10] (0) {min=0.537224,
49.8931% [10] (0)
49.8621% [10] (0) fmin=0
-49.8588%
0.00175233%
5.92005e-05%

left ###
[1] (0) {min=2.11141 max=2.11154 ,
[1] (0) {min=2.11141 , max=2.11154 ,
[10] (0) {min=1.03894 , max=1.03925 ,
[10] (0) {min=1.07217 , max=1.07255 ,
[10] (0) {min=0.537224, max=0.537291,
[10] (0)
[10] (0) {min=0 max=0.534746,

= true : passed

right ###
max=2.11154 ,
max=2.11154 ,
max=1.03925 ,
max=1.07255 ,
max=0.537291,

max=0.534746,

std dev=6.07913e-05}
std dev=6.10055e-05}
std dev=0.000141184}
std dev=0.00017294}
std dev=2.87576e-05}

std dev=6.78994e-05}

std dev=6.07913e-05} <2, 0, 2>
std dev=6.10055e-05} <2, 0, 2>
std dev=0.000141184} <1, 1, 2>
std dev=0.00017294} <3, 0, 1>
std dev=2.87576e-05} <1, 1, 2>

std dev=6.78994e-05} <1, 0, 3>

<2, 0, 2> My New Timer:
<2, 0, 2> Total Time:
<1, 1, 2> Assembly:
<3, 0, 1> Solve:
<1, 1, 2> I Prec:

Rank 0 ONLY:
<1, 0, 3> Not Rank 0:

Remainder:
Remainder:

Remainder:

1 3 I Some Useful Features

• Christian Glusa wrote a script that can create hierarchical pie plots with python

• Trilinos/packages/teuchos/comm/utils/plotStackedTimers.py

14 I Some Useful Features

• Can inject all StackedTimer calls into Kokkos
profiling tool via cmake flag:
• Teuchos KOKKOS PROFILING=ON

• Can add kokkos kemel launches to
StackedTimer with a new kokkos profiling
tool
• We can send you this file, it is not in the repo

• Can dump to std::cout to get a traceback into
the code if env variable is set:
• TEUCHOS ENABLE VERBOSE TIMERS=1

• Fast approximation (bracketing) for test failure
triage

• Good for large-scale HPC runs where interactive
debugging tools aren't effective

. Can combine with splitting output for each mpi rank

Iter 21, [1]
STARTING: Belos:
STOPPING: Belos:
STARTING: Belos:
STARTING: Belos:
STOPPING: Belos:
STARTING: Belos:
STOPPING: Belos:
STARTING: Belos:
STOPPING: Belos:
STARTING: Belos:
STOPPING: Belos:
STARTING: Belos:
STOPPING: Belos:
STOPPING: Belos:
Iter 22, [1]
STARTING: Belos:
STOPPING: Belos:
STARTING: Belos:

: 1.377530e-06
Operation Op*x
Operation Op*x
ICGS[2]: Orthogonalization
ICGS[2]: Ortho (Inner Product)
ICGS[2]: Ortho (Inner Product)
ICGS[2]: Ortho (Update)
ICGS[2]: Ortho (Update)
ICGS[2]: Ortho (Inner Product)
ICGS[2]: Ortho (Inner Product)
ICGS[2]: Ortho (Update)
ICGS[2]: Ortho (Update)
ICGS[2]: Ortho (Norm)
ICGS[2]: Ortho (Norm)
ICGS[2]: Orthogonalization
: 1.161976e-06
Operation Op*x
Operation Op*x
ICGS[2]: Orthogonalization

1 5 Phalanx
• FY19 Development:

• Support arbitrary layout and multiple devices in an single
Evaluation type
• Works for MDField, Field and Kokkos::View
• Layouts complete. Device is 90% complete.
• Complete rewrite of MDField: leverage c++11 variadic

templates, drops code base to —25% of original impl.

• Memory manager:
• Memory management scheme: reuse view memory within

DAG (and across DAGs).
• Drekar plasma (56 PDEs) now 18% of original memory
• MDField and Field no longer need unmanged allocators, they

can be constructed similar to Kokkos::Views
• On branch for now while debugging apps

• FY20 Plans:
• Fix application issues

• Unintentional assumptions in kernels

• Finish memory management across DAGs

Assembly: &dies w/ varying AD siz

16
Panzer: Hierarchic Parallelism Implemented in Evaluators
• Typical problem speedup is 10-40x, unit tests improved up to 80x

• Unified hierarchic parameter control for kernel launch: Safety mechanism for code reuse that differentiates AD vs non-AD evals

• Memory bound on roofline

45

40

35

30

25

20

15

10

5

0

i=0

I I

Vu = u•V6
i=0

•udSZ

4 7C
&4

' (
' < S\. 6 ,
K \oc

e e ,,,,ec ,, O., 0(§-- _\e,4 , ,„<, , r6 ,<<O 0 f- c.,c,c, ,i„.0 0 •,, ,•,c• ,,•,e• ,,, ••c.> <z,r4 , ,c,e'99)6 1). <b. '6c' c,'\e .e\ <64'.k. / \V .k/\.- \.- c0
.,,,c, /\.-

• Hierarchic Loop • Shared Mem rotal

100

90

80

70

60

50

40

30

20

Speedup

—0—Field Evaluation: PHI

—0—Integrate HDiv Diffusion Op

—•—Integrate HGrad Mass Op

—6—Field Evaluation: Grad PHI

Integrate HDiv Source Op

—•—Integrate HGrad Diffusion Op

Speedup of Panzer Kernels for Mixed HGrad/HDiv Unit Test Workset Size

Panzer
17

• L2 Projections extended to (Thyra/Teko) blocked systems

• Ordinal definitions

• Single GO based on Tpetra configure time choice

• LO is hard coded to int

• Elimination of all template parameters from DOF Manager and Connection Manager!

• Can still build type 1 and type 2 stacks together (currently required)

• Worksets: unifying construction paths and simplifying the interface

• ASC SQE Audit (Sept 2019)

• FY20 Plans:

• Periodic BC extensions

• Lazy evaluation of worksets

• Remove all use of UVM

• New assembly path to eliminate post-assembly communication (requires full one-ring)

• Disable (possibly drop) type-1 (epetra) stack support

