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Optimization Thrust Outline

• Notes on Bilevel Programming

• Preliminary Cyber Physical Security Models

o Worst Case Attacker Model

o Stochastic Worst Case Attacker Model

o Network Segmentation
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Bilevel Programming
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Figurc 1: The feasible region of IBLP [Moorc and Bard, 1990].

• Bilevel programs are very hard! NP-hard to be exact. In contrast to, say
mixed-integer programming, there is no existing commercial
technology for solving useful problems.
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Mixed-Integer Programming vs Bilevel
Programming

4

Mixed-Integer Programming (MIP)

• Major research began in late
1940's/early 1950's. By 1960's,
commercially available solvers
existed

• Mainstream commercial solver
CPLEX invented in 1988. By the early
2000s—after incorporating
academic research—it became a
widely-used tool capable of solving
real world problems

• Plethora of MIP research continues
to improve solvers

• Solvers are so efficient that MIP is
widely used for solving problems in
many industries including energy,
airline, health, finance,
manufacturing

• Bilevel Programming

• Major research began in early
1980's

• No commercially available
solvers exist to-date

• Up until the last few years, most
progress on bilevel optimization
has been on solving specific
problems or classes of problems.
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Recent Advances in Bilevel Programming

• Existing Software
o MibS: Open-source bilevel programming branch-and-cut solver built

using open-source COIN-OR software
O CPLEX-based solver: European Academics (Fischetti, Ljubic, Monaci,
and Sinnl) have developed solver based on their research for
academic-use-only

• We would like to develop a similar solver built over Gurobi
o We have Gurobi licenses
o Greater control over software so we can add our own ideas into the
solver

• General algorithms for solving hybrid discrete-continuous problems
O "A projection-based reformulation and decomposition algorithm for
global optimization of a class of mixed integer bilevel linear programs"
• Coded by grad student intern She'ifa Punla

o Academic Alliance partners at Georgia Tech interested in algorithms for
solving these hard problems
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Cyber Physical Attack Sequence Modeling

Utility Control Center Regulatory Agency

Internet

Substation

RTU

FireVUEill

MM.

Router

5mch

Relay COrlimilei

EMS

VolP Phone

R elay A Relay B Relay C

SWItCh

Card Šecur*
Reacler Cernere

• Elements of cyber attack
sequuriuu

o Sequence of hosts

o Attacker access at hosts

o Attacker actions at hosts

o Network knowledge

o Success probabilities

• Consider multiple attack
sequences with some
overlapping effort

• First question: while
considering damage to the
power grid, which attack
sequences are most
damaginc?



Attack Graph tt:
A simple example with Terminal nodes inflict damage
6 attack sequences...
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Attack Graph Based Attack Model

A slightly more complicated example:

Multiple initial nodes
possibly from multiple
communication
networks
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at multiple
substations can be
compromised and
allow attacker to
open loads,
generators, or lines

Combining kill chains into a single
graph allows for analysis of efficient
coordinated attacks
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Worst-Case Attacker Model tt:
s.t.
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Stochastic Attack Graph
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Stochastic Attack Graph Based Attack Model WAY
krEr

• Use maximum flow with multiple sinks
• Interpret flow as "effort"
• Edge probabilities cause effort leaking
• Generalize max flow by considering power grid reaction to attack...

Attacker effort budget

10

(max effort, success probability)

minimum effort requirement

(5, 0.75)

(6, 0.75)

4
(4, 0.85)•  

If effort reaching this terminal
node is above 4, three RTU's
are compromised



Stochastic Worst-Case Attack Model
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Intrusion Detection System Placement



Network Segmentation Problem

For now, assume three
security zone model
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Network Segmentation Problem
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• The grid can be severely
damaged when
Substation 2 and
Substation 3 are attacked
together.

TSO 2

• Substation 1 and
CC 'L

Substation 2 are
configured so that the grid
is fine if they are attacked
together.
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Network Segmentation Model
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Future Extensions of Network Segmentation

• Network segmentation pricing
o Assign a cost to each subnet that depends on security zone
o Use a Dudg et to limit the overall cost of network segmentation

• If necessary, add subnet detail so that a subnet is more than just a
node. Preferably don't since this model requires minimal SME data.
o Use caution when adding model detail. We must remember that these

bilevel models are incredibly difficult to solve
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