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Software platform

= Pyomo: Python Optimization Modeling Objects ‘)
= Formulate optimization models within Python PYOMO

from pyomo.environ import ¥*

m = ConcreteModel ()

m.x1 = Var ()

m.x2 = Var (bounds=(-1,1))

m.x3 = Var (bounds=(1,2))

m.obj = Objective (sense = minimize,

expr = m.x1**2 + (m.x2*m.x3)**4 + m.x1*m.x3
+ m.x2 + m.x2*sin(m.x1l+m.x3) )

= Utilize high-level programming language to write scripts and
manipulate model objects
= Leverage third-party Python libraries

e.g. SciPy, NumPy, MatPlotLib, Pandas
#CCR
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Pyomo at a Glance =
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Pyomo.dae ) e,

= Extend Pyomo syntax to represent:
= Continuous domains
= QOrdinary differential equations
= Partial differential equations
= Systems of differential algebraic equations
= Higher order differential equations and mixed partial derivatives
= Available discretization schemes
= Finite difference methods (Backward/Forward/Central)
= Collocation (Radau or Legendre roots)
= Extensible framework
= Write general implementations of custom discretization schemes
= Build frameworks/meta-algorithms including dynamic optimization
= |nterface with numerical simulators
= Scipy for simulating ODEs
= CasADi for simulating ODEs and DAEs

#CCR
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PySP <7 PySp @&

= Framework for simplifying implementation of stochastic
programming models, only requiring:
= deterministic base model
= scenario tree defining the problem stages and uncertain parameters

= PySP provides two primary solution strategies
= build and solve the deterministic equivalent (extensive form)
= Progressive Hedging
= (plus beta implementations of others, including 2-stage Benders and
an interface to DDSIP)
= Parallel infrastructure for generating and solving subproblems
on parallel (distributed) computing platforms

#CCR
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) : Sand
Dynamic system under uncertainty L}
n i [2]
Semibatch reactor : =5-k1exp (_ﬂ) "
V; RT,
A->B-C | B, E,
F Cy =k exp <_R_Tr> Cq — ko exp <_R_Tr) Cy
r @ 4 C'c =ky exp (—%) Cy
| i i _Fabl,
Tw,j T Pr
‘// (Prcpr)Tr =%(Tf -T;)
=g " E E
‘—E_} — kyexp <_R_fll’) CoAHy — kyexp (_R_;’) CyAH,

A; A
+ aw,jW]O(Tw,j - Tr) + aw,chO(Tw,c - Tr)

Model inputs (control variables)
E,: Inlet flow rate of A
Ty c: Water temperature in cooling coil

Ty j: Water temperature in cooling jacket

#CCR (2] Abel and Marquardt, AIChE Journal (2000)
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Dynamic model implementation e,

from pyomo.environ import *
from pyomo.dae import *

def build_semibatch_model(data):
m = ConcreteModel()

# Continuous time domain
m.t = ContinuousSet(bounds=(0,21600), initialize=m.measT)

# Other variable/parameter/constraint declarations

# Differential Variable
m.Ca = Var(m.t)

= i i : F E
m.dCa = DerivativeVar(m.Ca) C,==2—k exp (_ 1 ) o

# Differential equation
def _dCacon(m,t):
if t == 0:
return Constraint.Skip
return m.dCa[t] == m.Fa[t]/m.Vr[t] - \
m.ki1*exp(-m.E1/(m.R*m.Tr[t]))*m.Ca[t]
m.dCa = Constraint(m.t, rule=_dCacon)

# Automatically apply collocation over finite elements discretization
discretizer = TransformationFactory(‘dae.collocation’)
discretizer.apply_to(m, nfe=20, ncp=4)

return m



Optimal control ()}

= Find the nominal control profiles such that the batch can be
‘saved’ given a partial cooling system failure at any point
during the batch time!2!

Fy
i

W

E;ﬁ%(ﬂ?
‘j
}5
Tw,j (t) = Tw,c (t) t < trail
(PwCp, Vi )Tw,j = aw, jsA; WTO (Tw,; = Tr) t> trau

#CCR (2] Abel and Marquardt, AIChE Journal (2000)
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Optimal control scenarios
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n-Stage SP as a 2-stage problem

77 Ntora

“First Stage”

“Recourse Decisions”
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Stochastic structure implementation

=" |mplement callback functions to:
= Define the scenario tree structure
= Build a model for each scenario

= Create and solve extensive form

Laboratories

runef --solve --solver ipopt --output-solver-log -m semibatch.py

= Solve using progressive hedging

runph --solver ipopt --output-solver-log -m semibatch.py --default-rho=.25

+CCR
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Optimal control implementation

= 15 hours (including debugging)

= 300 lines of code
(60%)Deterministic dynamic model specification
" (2%) Discretization
(18%) Stochastic problem formulation
(20%) Result plotting
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Parameter estimation W=

Experiment 1 Experiment 2

km»kz
Ey, E;
"‘ Stage 1
>/
~N " kl, k2
&, o
A=B=C

L] 2 ‘

min error; ‘ ‘

(ke ky E Ey) Z ( meas) ‘
exp.

s.t. semibatch model equations
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Parameter estimation

= Three different experiments

= different manipulated variables, different measured data

Experiment 1 Experiment 2
Step change: F, Step change: T, . Step change: F,, T, .
Measure: C,, Cp, C., T} Measure: T, Measure:Cy, T;

T~ |
pOAEH
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Semibatch parameter estimation results ),

= Extensive form results

k, (1/s) Kk, (1/s) E,(kJ/kmol) E, (kJ/kmol) Objective

Actual 15.01 85.01 30,000 40,000 -
All Meas. 16.84 81.19 30,322 39,861 2.147
Missing Meas. 20.69 77.42 30,850 39,697 24.976

all: 47 IPOPT iterations, 2674 variables, 2670 constraints, 1.08 s to run
missing: 33 IPOPT iterations, 2674 variables, 2670 constraints, 0.87 s to run

= Progressive Hedging results”

k, (1/s)  k,(1/s) E, (kJ/lkmol) E, (kJ/kmol) Obijective

Actual 15.01 85.01 30,000 40,000 -
All Meas. 15.72 30.59 30,146 37,017 3.170
Missing Meas. 24.38 69.49 31,302 39,400 25.051

all: 50 PH iterations, 15.08 s torun  missing: 35 PH iterations, 11.05 s to run
IPOPT subproblem size: 890 variables, 886 constraints, ~7 iterations
FCCR * PH is not guaranteed to converge on nonconvex problems
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Bubbling Fluidized Bed (BFB) Model L

= Gas-solid, 3 region model
(Lee and Miller, 2013, Ind. Eng. Chem. Res.)

Gas Outlet

seo

Bubble

Heat Transfer Solid Inlet

=N
Cloud-wake — o/ \& O ol

Surface Reaction

SED i~ SBD <

-

P1IOS | PlIOS

= Steady state model with 1-D spatial
variation %z Gas Inlet

FCCR
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LW

BFB Parameter Estimation (1/2)

min z (erT0Tmeqs)?

{C‘l"iahrhw}
exp.

s.t. BFB model equations

LL L

] ] |
i.‘

%.
& |-

r’

Heat Exchanger Model Parameters

C, Average correction factor for tube model

i § AN
a, Emopirical factor for tube model O i i
h, Heat transfer coefficient of tube walls % | l ‘
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BFB Parameter Estimation (2/2)

= Solve using progressive hedging in parallel

mpirun -np 1 pyomo _ns :

-np 1 runph --solver-manager=phpyro --shutdown-pyro \
-m bfb_paramest.py --solver=ipopt --default-rho=0.25

-np 1 dispatch_srvr :

-np 30 phsolverserver : \

(30 processors)

C, h,, Solve Time (s)
Actual 1.0 0.8 1500.0 -
Extensive Form 1.016 0.51 1450.35 604.45
Progressive Hedging 0.9824 0.7850 1501.74 610.98
(15 processors)
Progressive Hedging 0.9824 0.7850  1501.74 459.10

Extensive form problem size ~400,000 variables and constraints
PH subproblem size ~13,000 variables and constraints

ZCCR




Summary ) e,

= Explicitly capturing both uncertainty and system dynamics can
be important for many real-world applications

= Pyomo provides high-level modeling constructs that can be
easily combined to solve complex, structured optimization
problems. (www.pyomo.org)

New application areas

= Dynamics-informed optimization for resilient energy
= Trajectory planning under uncertainty

Thursday morning sessions
TA33. Pyomo |
TB33. Pyomo |l

#CCR
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Why capture model structure?

= Challenges with a flat representation
= manual reformulation is required to write a ‘solvable’ model
= difficult to reverse engineer the intent or goal of the original problem
= tedious to experiment with alternative model reformulations

= Benefits to explicitly capturing structure
= models are formulated in a more natural, intuitive form
= fewer coding mistakes
= separates model specification from the solution approach
= easy to experiment with different model reformulations
= encourages general implementations of common solution approaches

#CCR
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Stochastic structure implementation (1/2) @ =

def pysp _scenario_tree model callback():
from pyomo.pysp.scenariotree.tree_structure_model \
import CreateConcreteTwoStageScenarioTreeModel

st _model

= CreateConcreteTwoStageScenarioTreeModel(scenarios)

first_stage = st_model.Stages.first()
second_stage = st_model.Stages.last()

# First Stage

st _model.
st _model.
.StageVariables[first_stage].add('k2")
st _model.
st _model.

st _model

# Second

st _model.

StageCost[first_stage] = 'FirstStageCost’
StageVariables[first_stage].add('k1l")

StageVariables[first_stage].add('E1")
StageVariables[first_stage].add('E2")

Stage
StageCost[second_stage] = 'SecondStageCost'’

ZCCR  return st_model
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