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"Dynamic system under uncertainty"

Dynamic Optimization Stochastic Programming 
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Software platform
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• Pyomo: Python Optimization Modeling Objects 
PYOMO• Formulate optimization models within Python

from pyomo.environ import *

m = ConcreteModel()

m.xl = Var()

m.x2 = Var(bounds=(-1,1))

m.x3 = Var(bounds=(1,2))

m.obj = Objective(sense = minimize,

expr = m.xl**2 + (m.x2*m.x3)**4 + m.xl*m.x3

+ m.x2 + m.x2*sin(m.xl+m.x3) )

• Utilize high-level programming language to write scripts and
manipulate model objects
• Leverage third-party Python libraries

e.g. SciPy, NumPy, MatPlotLib, Pandas
cRfc 



Pyomo at a Glance

'PYOMO
Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Solver Interfaces _1

Core Optimization
Objects

Core Modeling
Objects

Model
Transformations
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GLPK

Gurobi

NEOS

AMPL Solver Library
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Bonmin

lpopt

Couenne
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Pyomo.dae
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• Extend Pyomo syntax to represent: 
213110kSPYOMO

• Continuous domains

• Ordinary differential equations IIP44Nt). DAE
• Partial differential equations

• Systems of differential algebraic equations

• Higher order differential equations and mixed partial derivatives

• Available discretization schemes
• Finite difference methods (Backward/Forward/Central)

• Collocation (Radau or Legendre roots)

• Extensible framework
• Write general implementations of custom discretization schemes

• Build frameworks/meta-algorithms including dynamic optimization

• Interface with numerical simulators
• Scipy for simulating ODEs

• CasADi for simulating ODEs and DAEs

:"CCR



PySP
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• Framework for simplifying implementation of stochastic
programming models, only requiring:

• deterministic base model

• scenario tree defining the problem stages and uncertain parameters

• PySP provides two primary solution strategies

• build and solve the deterministic equivalent (extensive form)

• Progressive Hedging

• (plus beta implementations of others, including 2-stage Benders and
an interface to DDSIP)

• Parallel infrastructure for generating and solving subproblems
on parallel (distributed) computing platforms

CCR



Dynamic system under uncertainty

• Semibatch reactor[21
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Model inputs (control variables)
Fa: Inlet flow rate of A
Twx: Water temperature in cooling coil

Twj: Water temperature in cooling jacket

CCCR [2] Abel and Marquardt, AIChE Journal (2000)
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Dynamic model implementation

from pyomo.environ import *
from pyomo.dae import *

def build semibatch model(data):

m = ConcreteModel()

# Continuous time domain
m.t = ContinuousSet(bounds.(0,21600), initialize=m.measT)

# Other variable/parameter/constraint declarations
•••

# Differential Variable
m.Ca = Var(m.t)
m.dCa = DerivativeVar(m.Ca) ,..ty Fa

a = — kiexp
Vr RTr

# Differential equation
def dCacon(m1t):

if t 0:
return Constraint.Skip

return m.dCa[t] == m.Fa[t]/m.Vr[t] - \
m.k1*exp(-m.E1/(m.R*m.Tr[t]))*m.Ca[t]

m.dCa = Constraint(m.t, rule._dCacon)

# Automatically apply collocation over finite elements discretization
discretizer = TransformationFactory(tdae.collocation')
discretizer.apply_to(m, nfe=20, ncp=4)

return m
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Optimal control

• Find the nominal control profiles such that the batch can be
`saved' given a partial cooling system failure at any point
during the batch time[21

cRf 

T w = Tw,c(t)

A Vr
(pwCpwV j)Dwi awisrij (i

T
w,1 Tr)

Vr,0

[2] Abel and Marquardt, AIChE Journal (2000)
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Optimal control scenarios

Nonanticipativity
Constraints

Nominal

tfail — 4

tfail = 3

tfail = 2

tfail = 1

c ,.cR
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n-Stage SP as a 2-stage problem

"First Stage"

"Recourse Decisions"

cf cR

Sandia
National
Laboratories

Nominal Scenario

Failure
scenarios



Stochastic structure implementation

• Implement callback functions to:

• Define the scenario tree structure

• Build a model for each scenario

• Create and solve extensive form

Sandia
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runef --solve --solver ipopt --output-solver-log -m semibatch.py

• Solve using progressive hedging

runph --solver ipopt --output-solver-log -m semibatch.py --default-rho=.25

cRf c 
13



Co
nc

en
tr

at
io

n 
(
k
m
o
l
/
m-

3
)
 

Optimal control: tfail = 3 h

10

8

6 -

4 -

CCCR

F
e
e
d
 F
a 
(
k
m
o
l
/
h
)
 

Sandia

laboratories

16 -

14 -

12 -

10 -

8 -

6 -

4 -

2

340 -

330 -

320 -
m

g- 310 II
a.;

a.]

300

290 -

Coil Temp.

— Jacket Terry.

— Reactor Temp.

Irr —

2 4 8

CenterfaComputingResearch

14



Optimal control implementation

• 15 hours (including debugging)

• 300 lines of code

(60%)Deterministic dynamic model specification

i (2%) Discretization

(18%) Stochastic problem formulation

(20%) Result plotting
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Parameter estimation

Experiment 1 Experiment 2 Experiment 3

• • •
•

6.)
A—>B C

L
2

kj2 

E 

min (errormeas)
{ic1,k2,E1,E2}

exp.

s. t. semibatch model equations
CCR

Cemulor Comprting Reward
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Parameter estimation
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• Three different experiments

• different manipulated variables, different measured data

Experiment 1

Step change: Fa

Measure: Ca, Cb, Cc,Tr

cf cR

Experiment 2

Step change: Twx

Measure: Tr

A

Experiment 3

Step change: Fa,Twx

Measure:Cb,Tr



Semibatch parameter estimation results

• Extensive form results
•=•
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k1 (1/s) k2 (1/s) El (kJ/kmol) E2 (kJ/kmol) Objective

Actual 15.01 85.01 30,000 40,000

All Meas. 16.84 81.19 30,322 39,861 2.147

Missing Meas. 20.69 77.42 30,850 39,697 24.976

all: 47 IPOPT iterations, 2674 variables, 2670 constraints, 1.08 s to run

missing: 33 IPOPT iterations, 2674 variables, 2670 constraints, 0.87 s to run

• Progressive Hedging results*

k1 (1/s) k2 (1/s) El (kJ/kmol) E2 (kJ/kmol) Objective

Actual 15.01 85.01 30,000 40,000

All Meas. 15.72 30.59 30,146 37,017 3.170

Missing Meas. 24.38 69.49 31,302 39,400 25.051

all: 50 PH iterations, 15.08 s to run missing: 35 PH iterations, 11.05 s to run

IPOPT subproblem size: 890 variables, 886 constraints, -7 iterations

CCR * PH is not guaranteed to converge on nonconvex problems



Bubbling Fluidized Bed (BFB) Model

• Gas-solid, 3 region model

(Lee and Miller, 2013, Ind. Eng. Chem. Res.)

Bubble
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Heat Transfer Solid Inlet

• Steady state model with 1-D spatial
variation

CCCR
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BFB Parameter Estimation (1/2)

Experiment 2 Experiment 30

WIPIPF.1

Heat Exchanger Model Parameters

C. Average correction factor for tube model

ah Empirical factor for tube model

hw Heat transfer coefficient of tube walls

CCCR

C

CD

co

min (errOrmeas)2
{Cnah,hw}

exp.

S . t. BFB model equations
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BFB Parameter Estimation (2/2)

• Solve using progressive hedging in parallel
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mpirun -np 1 pyomo_ns : -np 1 dispatch_srvr : -np 30 phsolverserver : \
-np 1 runph --solver-manager=phpyro --shutdown-pyro \
-m bfb_paramest.py --solver=ipopt --default-rho=0.25

Cr ah h„, Solve Time (s)

Actual 1.0 0.8 1500.0

Extensive Form 1.016 0.51 1450.35 604.45

Progressive Hedging 0.9824 0.7850 1501.74 610.98
(15 processors)

Progressive Hedging 0.9824 0.7850 1501.74 459.10
(30 processors)

Extensive form problem size -400,000 variables and constraints
PH subproblem size -13,000 variables and constraints

CCR



Summary
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■ Explicitly capturing both uncertainty and system dynamics can
be important for many real-world applications

■ Pyomo provides high-level modeling constructs that can be
easily combined to solve complex, structured optimization
problems. ( www.pyomo.org)

New application areas 

■ Dynamics-informed optimization for resilient energy

■ Trajectory planning under uncertainty

CCR

Thursday morning sessions
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Questions?
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Why capture model structure?
Sandia
National
Laboratories

■ Challenges with a flat representation

■ manual reformulation is required to write a 'solvable' model

■ difficult to reverse engineer the intent or goal of the original problem

■ tedious to experiment with alternative model reformulations

■ Benefits to explicitly capturing structure

■ models are formulated in a more natural, intuitive form

■ fewer coding mistakes

■ separates model specification from the solution approach

■ easy to experiment with different model reformulations

■ encourages general implementations of common solution approaches

•~CCR



Stochastic structure implementation (1/2)

def pysp_scenario_tree_model_callback():
from pyomo.pysp.scenariotree.tree_structure_model \

import CreateConcreteTwoStageScenarioTreeModel

Sandia
National
Laboratories

st model = CreateConcreteTwoStageScenarioTreeModel(scenarios)

first stage = st model.Stages.first()
second stage = st model.Stages.last()

,irst Stage
st_model.StageCost[first_stage] = 'FirstStageCost'
st_model.StageVariables[first_stage].add('k1')
st_model.StageVariables[first_stage].add('k2')
st_model.StageVariables[first_stage].add('E1')
st_model.StageVariables[first_stage].add('E2')

# Second Stagr
st_model.StageCost[second_stage] = 'SecondStageCost'

tKci? return st_model
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