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ABSTRACT

Recent research has shown the viability of using a six-degree-of-freedom (6-DOF') shaker to reproduce the
system-level environments and stress fields exhibited by the component of interest. This paper presents a
method to aid in the 6-DOF test planning process using the results derived from a free-free modal test of
the component on a test fixture. This method incorporates the Modal Craig-Bampton (MCB) procedure
that transforms the free-free modes to sets of fixed-base and rigid-body modes. To enable this modal trans-
formation, the MCB procedure relies on an analytical model of the fixture and adequate instrumentation
to capture the fixture’s motion within the frequency band of interest. In its simplest form, the fixture may
only consist of six rigid-body modes; however, it may also include fixture elastic modes. Subsequently, this
transformation generates a transfer function between the component’s response to the rigid-body modes of
the fixture, thereby enabling a prediction of the 6-DOF shaker’s ability to accurately reproduce the target
response experienced by the component in a test environment. A numerical simulation predicts that driving
the test component with a 6-DOF shaker accurately reproduces the response experienced during an acoustic
test of a full system.
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1 INTRODUCTION

The essence behind the Modal Craig-Bampton (MCB) procedure is to transform the modal coordinates derived
from an experimental modal test to a linear combination of rigid-body and fixed-base modes. The primary
purpose of this procedure is to ease the implementation of experimental dynamic substructuring that couples
an experimental test article with an analytical model [1]. An alternative use for the MCB procedure includes
deriving inputs for a vibration shaker that supplies base excitation to control the test article to a desired
response [2, 3]. This abstract details a test-planning procedure that utilizes the MCB procedure with a modal
test of the test article mounted on the test fixture to predict the 6-DOF shaker’s ability to reproduce the
component’s response. The knowledge derived from this procedure can aid the test engineer in planning a
vibration shaker test to better control the component to reproduce the desired response.

2 MODAL CRAIG-BAMPTION THEORY

The foundation of the MCB procedure is to derive a transformation matrix T that transforms the free-free
modal coordinates q of the test article on the fixture to a linear combination of fixed-base modal coordinates
p of the test article with the base motion constrained to zero and of rigid-body modal coordinates s that
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correspond to the rigid-body motion of the fixture:
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Obtaining the transformation between q and s involves constraining the measured motion on the fixture to
the motion derived from an analytical model of the stand-alone fixture. As the fixture is generally designed
to be stiff compared to the test article, there is minimal elastic motion in the fixture itself, and the motion of
the fixture can primarily be resolved using the six rigid-body modes derived using the mass properties (i.e.,
center of mass and moments of inertia) of the stand-alone fixture. This constraint leads to the transformation

q, =¥, s (2)
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where q, is the modal motion corresponding to the rigid-body motion, ® is the set of free-free experimental
mode shapes corresponding to the measured fixture degrees of freedom, and W is the set of rigid-body mode
shapes derived from the mass properties of the fixture that also correspond to the measured fixture degrees
of freedom. Also, the superscript 1 denotes the Moore-Penrose pseudoinverse.

Obtaining the transformation between q and p utilizes a slightly more complicated procedure that requires

identifying a constraint matrix that enforces zero motion at the fixture [4]. The full derivation is omitted here
for brevity, but can be found in [2]. The end result is the transformation
q,= LT p 3)
T
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With the components of T defined, applying this transformation in the frequency domain results in a coupling
between p and s. Rearranging the resulting equations to solve for p with respect to the prescribed shaker
inputs s results in
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where [--- | denotes a diagonal matrix, H, is the transfer function relating the elastic modal motion of the
test article to the shaker inputs, and wgy is the fixed-base natural frequencies that are estimated with the
MCB procedure. This transfer function provides a measure of how each of the elastic modes respond to
the various shaker inputs. Converting back to physical coordinates results in the transfer function H, ¢ that
relates the physical response of the component x. and s:

X = ®(T,Hps + Ts)s (5)
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This equation facilitates an estimation of the required input PSD S.s given a target response S,, located at
the control points on the component:

Sss = Hlsswa‘ (HLS) H (6)

3 MODAL TESTING

A modal test of the component on the fixture generates all of the terms that comprise H, ;. Figure 1 shows a
picture of the test setup where the fixture was suspended by a bungee cord to approximate a free-free boundary
condition. The test also included 4 triaxial accelerometers located at various locations on the component and
4 additional triaxial accelerometers located at the corners of the fixture. Characterizing the system up to
2000 Hz required hammer impacts at multiple locations; Fig. 1 shows the modal parameters extracted from
the tests.



Mode | fn [Hz] | € [%]
1 380.8 | 0.19
2 1044 | 0.49
3 1140 | 0.83
4 1648 | 0.97
5 1827 | 0.33
6 2013 | 0.16

Figure 1: Test setup of the RC mounted on the fixture (left) and a list of the modal parameters (right)

4 SHAKER PERFORMANCE PREDICTIONS

The performance predictions of the 6-DOF shaker utilized the component’s response originating from an
acoustic test of the Modal Analysis Test Vehicle (MATV) conducted at the Atomic Weapons Establishment
(AWE). This hardware consisted of a conical shell encapsulating the component mounted to a flat plate. A
description of the hardware used in the acoustic test can be found in [5].

Figure 2 shows the autospectral densities (ASDs) for each of the twelve acceleration responses on the compo-
nent for both the truth data derived from the MATYV acoustic test and the estimated response on the 6-DOF
shaker. These results show that the 6-DOF shaker can accurately reproduce the response at the control DOFs
at nearly all frequency lines.

This procedure can also derive performance estimates for single-axis shakers by constraining all DOFs but
the active DOF to zero. Figure 3 shows the ASDs for each acceleration response for both the truth data and
the optimal shaker input when only considering shaker motion in the x-direction. Limiting the excitation
to only the z-direction reproduces only the low-frequency responses in the x-direction; however, there are
significant discrepancies in all other directions. In this case, an advantage of the 6-DOF shaker is the ability
to reproduce the responses in all directions simultaneously with a single test.

5 CONCLUSIONS

This abstract outlined a method for planning vibration tests on 6-DOF shakers using the results from a
modal test of the component mounted on the fixture. Combining these results with the Modal Craig-Bampton
procedure enabled an estimation on a shaker’s ability to excite the component to reproduce a desired response.
The performance predictions show the increased ability of a 6-DOF shaker to reproduce the required responses
when compared to classical shaker testing in a single direction.
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Figure 2: ASDs for each of the twelve acceleration responses on the RC. These plots include the truth data

derived from an acoustic test (blue) and the estimated response of the
response on the 6-DOF shaker (red).
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Figure 3: ASDs for each of the twelve acceleration responses on the

MCB model to a controlled base input
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RC. These plots include the truth data

derived from an acoustic test (blue) and the estimated response of the MCB model to a controlled base input

with the shaker motion constrained to the x-direction (red).
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