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What is a Qubit?

A stable,

controllable,

quasi two-level quantum
system...
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4 Question: What is a superconducting qubit?
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1 Photon Answer: Non-linear superconducting resonator



5 Superconducting qubits require nonlinearity
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Josephson Junctions Provide Nonlinearity for Qubits
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7 I Overview of transmon qubit
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1 One view of a transmon
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9 Quick overview of other types of qubits
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All have inductance and capacitance... & hence rf losses.



What can go wrong?
How can resonators help?



Problem: two-level fluctuators in oxides & on surfaces
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V$$$ (Volts)

First reported by:
R.W. Simmonds et al. Phys. Rev. Lett. 93, 077003 (2004).

In general: -0.7 TLS/GHz 0-12



12 What are the paths to decoherence

• Defects in SC

• Interface dirt

• Environment

• Trapped flux

• also, stray light

Hence qubit fab is:

Single layer of metal + stitching
On low loss substrates
No interlayer dielectrics!
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13 Superconducting Resonators have many of the same features
as qubits

cross-section view
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But simpler to measure



14 What to expect from Q as the resonator is cooled
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15 I New materi
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16 I Low Power Q probes losses due to two-level-systems Oxides
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17 I Design...
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18 Noise spectroscopy

L4-) Informs TLS/fluctuator models
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S. de Graaf et al, NATURE COMMUNICATIONS (2018).

From: Christopher McKenney, "Two Level Systems (TLS) Noise and RF Readouts", 4th
Microresonator Workshop 29th July, 2011.



1 9 Conclusions

Resonators are

Integral to QC

Materials

Diagnostics
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20 1 Questions?
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