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Quantum Phenomena



What is a Qubit!?

A stable,

controllable,

quasi two-level quantum
system...
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+ | Question: What is a superconducting qubit?
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Answer: Non-linear superconducting resonator



5 | Superconducting qubits require nonlinearity

Wpq * Vg * O3

Josephson Junction

SEM image courtesy of the Institute for

Quantur Camputing (IQC] at the Univessity af Waterioa



Josephson Junctions Provide Nonlinearity for Qubits

Josephson equations:
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7 I Overview of transmon qubit

|
|
Cin B

A N g

Ci, Ej

Lrg = =i X I:I= 4EC(ﬁ _ ng)Z _ EJ COS 9/5

o

(b)

Jaynes-Cummings Hamiltonian
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J. Koch et al., PRA, 76, 042319 (2007)



One view of a transmon

CPW ground plane (M)

CPW center pin (M)
SC island 1Al

J. Koch et al., PRA, 76, 042319 (2007)
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A. Hauck et a/., Quant. Inf. Proc. 8, 105 (2009)




9 | Quick overview of other types of qubits

Phase qubit FluxFgukenium
Yale group
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All have inductance and capacitance... & hence rf losses.



What can go wrong?
How can resonators help!?




I Problem:
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two-level fluctuators in oxides & on surfaces

First reported by:
R.W. Simmonds et al. Phys. Rev. Lett. 93, 077003 (2004).

10.5 § RML and coworkers, unpublished.
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- | What are the paths to decoherence
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Hence qubit fab is: Interdigital capacitor

Single layer of metal + stitching
On low loss substrates
No interlayer dielectrics!

Dirt at interfaces




13 | Superconducting Resonators have many of the same features

as qubits

cross-section view

But simpler to measure




14 | What to expect from Q as the resonator is cooled

‘ (moderately) High Power

Qi

Low Power

TLS losses

Add picture of empty states?

quasiparticle losses
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15 | New materiats — ' '
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Low Power Q probes losses due to two-level-systems Oxides
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LogMag(S,,)

f«: thermal shifts, quasiparticles, kinetic inductance
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18 I Noise spectroscopy

Informs TLS/fluctuator models
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Microresonator Workshop 29t July, 2011.



19 I Conclusions

Resonators are
* Integral to QC
 Materials

o Diagnostics
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. | Questions!?
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