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2 I Motivation for Understanding Modal Response for Vibration Testing

 Vibration qualification testing is designed to make sure the component (or
payload) will survive the field environment.

» Large uncertainties exist because:
1. The sensors from field test:
Were in the wrong location
Were too few
Ignored rotations
Enveloping of measurements may add an unknown amount of conservatism

Laboratory shaker environments, particularly on single axis shakers can significantl
change the input from that experienced in the field because of constraints on 5 DoF.
This 1s true even if the shaker test “perfectly” controls to one DoF response.

esponse and/or force limiting are sometimes applied for high cost prototypes to
mitigate part of this problem).

« Sometimes we unnecessarily break parts and force re-design due to these
large uncertainties

 Although system level resBonses are quite complex, even in the modal
domain, great insight can be obtained with a handful of modes at the
component level. This understanding is useful at the specification and
vibration testing level.

* Here we demonstrate ar_malyticaIIE/_an_d with hardware that a few modal
uantities can provide significant insight into both the system environment and
the laboratory testing environment from the perspective of the component
response.
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3 1 Analytical Example

* We utilize a model of a 20 foot long rocket with a base mounted
component.

* The nozzle of the rocket is forced with 1000 Ibf rms random input in the
axial and 100 Ibf rms in the lateral direction up to about 1000 Hz.

* FE beam models are utilized in the 2 dimensional response.
* Three rigid body modes
» First bending mode is 21 Hz

* We animate the acceleration response to 2000 Hz.




Force input
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5 I Analytical Example Response

* Question 1 — How many modes do you see active in the rocket system

* Question 2 - How many modes do you think can describe the motion of
the component alone?

* Question 3 — How many modes do you think it takes to describe just the
base motion of the component?




Random acceleration response to 2000 Hz due to nozzle force
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7 lApproximately how many bending modes from this snapshot in time?
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s I Data for Questions 1,2,3

* Question 1 — How many modes do you see active in the rocket system

* Question 2 - How many modes do you think can describe the motion of
the component alone?

* Question 3 — How many modes do you think it takes to describe just the
base motion of the component?

* There are 18 modes below 1000 Hz, 25 below 2000 Hz — too many to
intuitively separate in the human mind of most engineers

- Base motion can be described by a lateral, vertical and pitch rigid body
mode at that axial station

« The first 18 modes are plotted on the next slide — How many shapes are
needed to describe the component motion?




9 I Rocket Modes up to 2000 Hz
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10 I What have we learned so far

* Full system response is pretty complicated

« Component response looks like it be can approximately be reproduced
by linear combination of a few modes (6,7,87)

« The component elastic response that produces damaging strain can be
reproduced by removing the rigid body modes from the few modes
above, i.e. elastic response contained in even fewer modes (3,4,57)




Approximate the component flight response with component
11 I mounted on a base fixture

* Aluminum fixture 12” wide, 2” thick, 24” deep
* Three rigid body modes

* Four elastic modes
1. Firstbend 115 Hz
2. 2 bend 359 Hz
3. 39bend 958 Hz
4. Axial 1213 Hz




12 1 Rocket Field Response and free modes of beam on fixture fit
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131 Let’s convert to our 3 DoF Laboratory

« Convert 3 rigid body modes to the X, Y and theta responses of the
shaker table

* Add to the rigid body modes four fixed base modes which will capture
the elastic response

» Calculate the fixed base component frequencies
* Wavespeed in aluminum 200,000 in/sec
- L=42”
+ Axial frequency is wavespeed/(4*L)
« El=1e7 (psi) * .4*3%/12 (in%)
« m (mass/length)=.1*.4*3/386 Ibf-sec?/in

. .« A (Els
Bending frequency is = (m)
. Al = 1875
- A, = 4.694
- A; = 7855

* Now find linear combination of these 3 rigid body modes and 4 fixed
base modes to attempt to fit component flight data

 Plot our approximate rigid body/fixed base modal response next to flight




14 1 Rocket Field Response and rigid body/fixed base modes isolated
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15

Rocket Field Response and rigid/fixed base modes fit (black line)
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16 I VWhat have we learned

* We can get a pretty good simulation of component field response with
just the rigid body modes and 4 fixed base modes that would be active
on a 3 DoF shaker

* Insight into the component motion is quite strong
+ Damaging elastic strain response is captured with just 4 fixed base modes

« 3 DoF table drive motion required to match field response is contained in the
rigid body mode response referenced to the vibration table fixture x,y,theta
coordinate system

A significant portion of the response was driven by rigid body pitch
(which is generally ignored in laboratory tests)




Now let’s look at squiggly lines since we have a basic physical
understanding of the 3 rigid body and 4 fixed base mode shape

- From a FE model, a free

modal model of the

component on fixture, or
an uncorrelated buzz test

on a 6 DoF shaker we
can extract the
transmissibility matrix
between rigid body
inputs and fixed base
mode outputs
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18 I Modal Input for our 3DoF shaker - FFTs

+ Note that ALL input DoF 10% 4
have significant response
throughout the 1000 Hz 10’
excitation band

« By driving the base input
significantly, we can
simulate field modal
responses, e.g. 21 Hz is
first rocket modal frequency

* No peaks appear at the
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Modal Fixed Base Responses - FFTs

Note that ALL modal DoF have
significant response throughout
the 1000 Hz excitation band

These fixed base modal
responses contain the strain in
the component

By driving the base input
significantly, we can simulate
field modal responses to
forces, e.g. 21 Hz is first rocket
modal frequency

No peaks appear at the fixed
base frequencies

Check out the most notable
frequency is about 395 Hz —
Axial Mode of the Rocket

Unscaled Modal Acceleration FFT
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20 8 395 Hz Rocket Response

» Axial mode has base input pitch and lateral as well as axial for component




21 I How well can you reproduce the component responses
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If we know the fixed base modal response, we can back out the
base input needed to best match it with our transmissibility matrix

Once we know the fixed base
responses we desire, we can back
out the base input required to best fit
the fixed base modal response

Conversely, if the field response put in
both x and 6 to obtain a response and
we only measured the x input, by
inputting ONLY x we will get a very
UNCERTAIN simulation
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Fixed base modal response FFT to perfectly controlled x input only

(no theta or vertical input)

« Uncertain Simulation
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Fixed base modal response FFT to controlled x input least squares
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25 1 Compare field x FFT input to least squares x FFT input

» Least squares x input has to compensate for lack of theta input

5 Field x input Compared with Least Squares x input
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Fixed base modal response FFT to Least Squares 45 degree input

26 I only (part lateral part axial)

* 45 degree input both lateral
and axial
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27 1 Lab 3 dof match to component flight response

Component beam centerline acceleration response 6” from top of component
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Traditional Single DOF Test Specification and Methods

Traditional 1DOF shaker test specifications
> Manually enter test specification breakpoints so, limited number of points
° Broad plateau’s to allow for test article modes to shift due to unit to unit variability.

> Basis is typically a few or 1 component input locations in the assembly. Will use 1 in these
examples

Types of test specifications discussed here
° Base input
> Response limited base input

> Least squares base input to match responses
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Source Data

Acceleration response time history data along the left side
of the component

Acceleration auto-spectral densities calculated

Considered from 10 to 1000 Hz

° The data drops off above 1000 Hz 42 in

Base location is taken as the source data for the test
specification

30 in

12 in

Base (0 in)




Acceleration ASD (G2/Hz)

30 I Traditional Single Axis Test Specifications

onent Response
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Draw straight-line test specification over 1/ 6t octave data

Apply to base of component as the input, in turn
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Responses to X-Direction Input

Acceleration ASD (G2/Hz)
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22 I Responses to Y-Direction Input
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X-Direction IDOF Input Test Response Compared to Rocket
13 1 Response
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Y-Direction |DOF Input Test Response Compared to Rocket
34 I Response
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Take Away from Single DOF Testing

Over excitation test article responses
> Test specification is generally a conservative, coarse straight line envelope of the reference

data
° Filling in valleys in the data
> Wider peaks than in the data
> Possibly much higher responses than the difference between the test specification and the

reference data at that location from the system
> Might be more response than the design can and should be subjected to

By itself, doesn’t give an indication of how representatively the damage mechanism
from the comparable load in the assembly is being engaged
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Response Limited Single DOF Testing

When test article 1s too responsive which causes failure, response limiting may be
applied to reduce the energy in the test article.

> We use it when, we know that it is responding too much
> When test article has failed previous testing

What causes the situation wherein response limited might be used?
o Shaker essentially provides infinite impedance

° Especially in the off axis test directions where zero motion is enforced with infinite force.
> Boundary condition causes test article to have modes much different than in the assembly

> Load application is not representative of what happens in the assembly (E.G. no rotational
loading. Only one axis at a time)

How does it work

> Compare the test response to measured or analysis based response in the next assembly for
the same loading condition

D

> Response profile is determined as do not exceed responses.

> Shaker controls system only engages at frequency values where the test inputs cause the
response to exceed the established limit

o If a response limit is exceeded, the control system reduces the input until the response
matches the limit.

‘O SaY




37 1 X-Dir Notched Inputs with Response Limits
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Y-Dir Notched Inputs with Response Limits
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39 I Take Away from Response Limited Single DOF Testing

Can prevent over testing condition
Only works if you can measure the response at the location of interest in the test
Need to know the appropriate levels to limit the response to

By itself, doesn’t give an indication of how representatively the damage mechanism
trom the comparable load in the assembly is being engaged
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Least Squares Input Spectrum from the measured response
locations

|

Use the responses at several locations as the basis for developing th
input

Measure the spectral density ratios from the responses to the input
location in the test configuration

Use the ratios to determine what the ideal input spectral density would bé
to obtain each response

Use the least square of the multiple inputs to determine the final input




4211 X-Dir Least Squares Input
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2 1 Y-Dir Least Squares Input
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3 1 X-Dir Least Squares Straight Line Test Specification Responses
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5 Base of Component (0 in.)
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Take Away from Input Determined from Least Squares Fit to
Match Test Article Responses

Can help match responses better
Input likely will not match reference data at the input location as well

Developing straight line specification can take away some of the ability to match
responses

Should be conservative at the response locations
Can’t get all of the responses exactly right. Limited to one target response.

By itself, doesn’t give an indication of how representatively the damage mechanism
from the comparable load in the assembly is being engaged




4 I Proof of Concept Field Hardware

«  System was Modal Analysis Test Vehicle (MATV)

« Hardware was developed by the Atomic Weapons
Establishment, AWE, UK

« Component is the removable component (RC), a round
robin test article developed for the dynamic
environments community ESTECH/SAVE/IMAC
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Acoustic Field Test and Instruments

The acoustic test was performed to 147
dB

Data were gathered on 4 triax
accelerometers on the RC




4 | Laboratory Hardware

* Another RC was mounted on a steel plate and instrumented with 4
triax accelerometers in the same locations as the field test as well as 4
triax accelerometers on the corners of the plate.




49 I Transform to Rigid Body Modes and Fixed Base Modes

Modal Craig-Bampton procedure transforms free-free modes to a set of fixed-base
(p) modes + rigid-body (s) modes

Free-free modal params. Transformation

X = dq p
(w?ree,r —w? + lz(free,r wfree,rw)CIr = {S}
Fixed-base shapes: Rigid-body shapes:

/\ ! ~ — e [ ,—\.\]
— }I L 11 — | U

R . ) T
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Mayes, Randall L., “A Modal Craig Bampton Substructure for Experiments, Analysis, Control and
Specifications”, Proceedings of the 339 International Modal Analysis Conference, Orlando, FL, February
2015, paper number 353.




so | Better Visualization of RC Fixed Base Modes from FE Model

Here are the five fixed base mode shapes active up to 2000 Hz

383 Hz 1026 Hz 1125 Hz

1651 Hz 1883 Hz
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Results from | DOF X axis input extended to physical ASDs

Transmissibilities were calculated with buzz test from the RC accelerometers to the

rigid base DOF inputs (X,Y,Z,RX,RY,RZ)

Acceleration from MATYV in X direction about 3 inches away from RC was used as
input in X direction only

X




Results from 1 DOF X input analytically extended
21 — ASD for 1X

ASDs from Acoustic Test-blue; 1 DOF shaker-red
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Results from 6 DOF test to control (50-2000 Hz) to 12 x 12
acoustic test cross spectral matrix (Paripovic/Nelson/Schultz)

« 6 ASDs from Acoustic Test — blue; 6 DOF shaker - red
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Results from 6 DOF test to control to |12 x |2 acoustic test
s I cross spectral matrix — page 2

6 ASDs from Acoustic Test — blue; 6 DOF shaker - red

102 £ o2k

1073 103k
104 £ 1074

100 8% 105§

-6 L L L L L L L L L -6 L L L L L L L L -6 L L L L L L L L L

10 10 10
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency - Hz Frequency - Hz Frequency - Hz
4X+ +

] 4Y+ 4z
10 T T T T T T T T T 101 . = = : = 5 . : = T T T T T
10°

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency - Hz Frequency - Hz Frequency - Hz




55 I Wrap-up for base mounted component modal response

Even though system response may be quite complex, a few fixed base component
modes with rigid body modes may represent the component field response.

Physical insight is available with a small number of component fixed base mode

shapes.
Strain (and its damage) is captured in fixed base mode shapes and their modal DOE

Rigid body accelerations are defined by the base laboratory input.

MDOF and SDOF laboratory base inputs can be tailored to best match field
response on component.

Matching fixed base modal responses with tailored base input provides better
simulation on entire component than response limiting which can only address a
tew locations.

Whatever specification is used, knowing the fixed base modal field response and the
tixed base modal specification response allows one to quantify the conservatism.




