
How Modal Analysis Can Bring
Insight to Vibration Testing

PRESENTED BY

Troy Skousen and Randy Mayes

Tutorial for the 90th Shock and Vibration Symposium
November 3-7, 2019 in Atlanta, Georgia

Wan
Sandia National Laboratories is a multirnission
Laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
international inc., for the U.S. Departrnent of

Energy's National Nuclear Security
Adrninistration under contract DE-NA0003525.

SAND2019-12816C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2  Motivation for Understanding Modal Response for Vibration Testing

Vibration qualification testing is designed to make sure the component (or
payload) will survive the field environment.

Large uncertainties exist because:
i. The sensors from field test:
. Were in the wrong location
. Were too few
. Ignored rotations
2. Enveloping of measurements may add an unknown amount of conservatism

Laboratory shaker environments, particularly on single axis shakers can significantY
change the input from that experienced in the field because of constraints on 5 DoE
(This is true even if the shaker test "perfeptly" controls to one DoF response.
Response and/or force limiting are sometimes applied for high cost prototypes to
mitigate part of this problem).

Sometimes we ,Innecessarily break parts and force re-design due to these
large uncertainties

Although system level responses are quite complex, even in the modal
domain, great insig_ht can be obtained with a handful of modes at the
component level. This understanding is useful at the specification and
vibration testing level.

Here we demonstrate analytically and with hardware that a few modal
quantities can provide significant insight into both the system environment and
the laboratory testing environment from the perspective of the component
response.



3 Analytical Example

We utilize a model of a 20 foot long rocket with a base mounted
component.

The nozzle of the rocket is forced with 1000 lbf rms random input in the
axial and 100 lbf rms in the lateral direction up to about 1000 Hz.

FE beam models are utilized in the 2 dimensional response.

Three rigid body modes

First bending mode is 21 Hz

We animate the acceleration response to 2000 Hz.
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5 Analytical Example Response

Question 1 — How many modes do you see active in the rocket system

Question 2 - How many modes do you think can describe the motion of
the component alone?

Question 3 — How many modes do you think it takes to describe just the
base motion of the component?



6 Random acceleration response to 2000 Hz due to nozzle force
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7 Approximately how many bending modes from this snapshot in time?
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8 Data for Questions 1,2,3

Question 1 — How many modes do you see active in the rocket system

Question 2 - How many modes do you think can describe the motion of
the component alone?

Question 3 — How many modes do you think it takes to describe just the
base motion of the component?

There are 18 modes below 1000 Hz, 25 below 2000 Hz — too many to
intuitively separate in the human mind of most engineers

Base motion can be described by a lateral, vertical and pitch rigid body
mode at that axial station

The first 18 modes are plotted on the next slide — How many shapes are
needed to describe the component motion?



9 Rocicet Modes up to 2000 Hz
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10  What have we learned so far

Full system response is pretty complicated

Component response looks like it be can approximately be reproduced
by linear combination of a few modes (6,7,8?)

The component elastic response that produces damaging strain can be
reproduced by removing the rigid body modes from the few modes
above, i.e. elastic response contained in even fewer modes (3,4,5?)



Approximate the component flight response with component
11 mounted on a base fixture

Aluminum fixture 12" wide, 2" thick, 24" deep

Three rigid body modes

• Four elastic modes
1. First bend 115 Hz

2. 2nd bend 359 Hz

3. 3rd bend 958 Hz

4. Axial 1213 Hz



12 Rocket Field Response and free modes of beam on fixture fit
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13 Let's convert to our 3 DoF Laboratory

Convert 3 rigid body modes to the X, Y and theta responses of the
shaker table

Add to the rigid body modes four fixed base modes which will capture
the elastic response

Calculate the fixed base component frequencies
Wavespeed in aluminum 200,000 in/sec

L=42"

Axial frequency is wavespeed/(4*L)

El=1e7 (psi) * .4*33/12 (in4)

m (mass/length)=.1*.4*3/386 lbf-sec2/in

Bending frequency is (EI)'
2111,2

= 1.875

112 = 4.694

/13 = 7.855

Now find linear combination of these 3 rigid body modes and 4 fixed
base modes to attempt to fit component flight data

Plot our approximate rigid body/fixed base modal response next to flight



14 Rocket Field Response and rigid body/fixed base modes isolated
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15 Rocket Field Response and rigid/fixed base modes fit (black line)
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16 What have we learned

We can get a pretty good simulation of component field response with
just the rigid body modes and 4 fixed base modes that would be active
on a 3 DoF shaker

Insight into the component motion is quite strong
Damaging elastic strain response is captured with just 4 fixed base modes

3 DoF table drive motion required to match field response is contained in the
rigid body mode response referenced to the vibration table fixture x,y,theta
coordinate system

A significant portion of the response was driven by rigid body pitch
(which is generally ignored in laboratory tests)
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Now let's look at squiggly lines since we have a basic physical
understanding of the 3 rigid body and 4 fixed base mode shape

From a FE model, a free
modal model of the
component on fixture, or
an uncorrelated
on a 6 DoF shaker we
can extract the
transmissibility matrix
between rigid body
inputs and fixed base
mode outputs

Scale is .001 to 1000

Bend 1 — 54 Hz

Bend 2 — 339 Hz

Bend 3 — 938 Hz

Axial — 1172 Hz

Blank plots are many
orders of magnitude
down
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18  Modal Input for our 3DoF shaker - FFTs

Note that ALL input DoF
have significant response
throughout the 1000 Hz
excitation band

By driving the base input
significantly, we can
simulate field modal
responses, e.g. 21 Hz is
first rocket modal frequency

No peaks appear at the
fixed base frequencies
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19  Modal Fixed Base Responses - FFTs

Note that ALL modal DoF have
significant response throughout
the 1000 Hz excitation band

These fixed base modal
responses contain the strain in
the component

By driving the base input
significantly, we can simulate
field modal responses to
forces, e.g. 21 Hz is first rocket
modal frequency

No peaks appear at the fixed
base frequencies

Check out the most notable
frequency is about 395 Hz —
Axial Mode of the Rocket
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20 395 Hz Rocket Response

Axial mode has base input pitch and lateral as well as axial for component



21 How well can you reproduce the component responses



22 1

If we know the fixed base modal response, we can back out the
base input needed to best match it with our transmissibility matrix

Once we know the fixed base
responses we desire, we can back
out the base input required to best fit
the fixed base modal response

Conversely, if the field response put in
both x and 0 to obtain a response and
we only measured the x input, by
inputting ONLY x we will get a very
UNCERTAIN simulation
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23 1

Fixed base modal response FFT to perfectly controlled x input only
(no theta or vertical input)

Uncertain Simulation
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I 
Fixed base modal response FFT to controlled x input least squares

24 fit to fixed base modes 1-3 ,  ~~ r~ ~P11 fH11 H12 H131

• Closer Simulation
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25 Compare field x FFT input to least squares x FFT input

Least squares x input has to compensate for lack of theta input
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Fixed base modal response FFT to Least Squares 45 degree input
only (part lateral part axial) Pi H11 H12 H13
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27 Lab 3 dof match to component flight response

Component beam centerline acceleration response 6" from top of component
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28 Traditional Single DOF Test Specification and Methods

Traditional 1DOF shaker test specifications

o Manually enter test specification breakpoints so, limited number of points

o Broad plateau's to allow for test article modes to shift due to unit to unit variability.

O Basis is typically a few or 1 component input locations in the assembly. Will use 1 in these
examples

Types of test specifications discussed here

O Base input

O Response limited base input

o Least squares base input to match responses



29 Source Data

Acceleration response time history data along the left side
of the component

Acceleration auto-spectral densities calculated

Considered from 10 to 1000 Hz
. The data drops off above 1000 Hz

Base location is taken as the source data for the test
specification

42 in

30 in

12 in

Base (0 in)



30 Traditional Single Axis Test Specifications

Base X-dir Component Response
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side of the component

1/6th octave ASDs generated from the data

Use base (0") in the X- and Y-directions, in turn. Ignore rotations

Draw straight-line test specification over 1/6th octave data

Apply to base of component as the input, in turn
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31 Responses to X-Direction Input
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32 Responses to Y-Direction Input
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X-Direction I DOF Input Test Response Compared to Rocket
33 Response
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Y-Direction I DOF Input Test Response Compared to Rocket
34  Response
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35 Take Away from Single DOF Testing

Over excitation test article responses
o Test specification is generally a conservative, coarse straight line envelope of the reference

data

• Filling in valleys in the data

• Wider peaks than in the data

• Possibly much higher responses than the difference between the test specification and the

reference data at that location from the system

• Might be more response than the design can and should be subjected to

By itself, doesn't give an indication of how representatively the damage mechanism
from the comparable load in the assembly is being engaged
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36 Response Limited Single DOF Testing

When test article is too responsive which causes failure, response limiting may be
applied to reduce the energy in the test article.
. We use it when, we know that it is responding too much
. When test article has failed previous testing

What causes the situation wherein response limited might be used?
. Shaker essentially provides infinite impedance
. Especially in the off axis test directions where zero motion is enforced with infinite force.

. Boundary condition causes test article to have modes much different than in the assembly

. Load application is not representative of what happens in the assembly (E.G. no rotational
loading. Only one axis at a time)

How does it work
. Compare the test response to measured or analysis based response in the next assembly for

the same loading condition
. Response profile is determined as do not exceed responses.
. Shaker controls system only engages at frequency values where the test inputs cause the

response to exceed the established limit
. If a response limit is exceeded, the control system reduces the input until the response

matches the limit.

•



37 X-Dir Notched Inputs with Response Limits
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38  Y-Dir Notched Inputs with Response Limits
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39 Take Away from Response Limited Single DOF Testing

Can prevent over testing condition

Only works if you can measure the response at the location of interest in the test

Need to know the appropriate levels to limit the response to

By itself, doesn't give an indication of how representatively the damage mechanism
from the comparable load in the assembly is being engaged



Least Squares input Spectrum from the measured response
40 locations

Use the responses at several locations as the basis for developing the
input

Measure the spectral density ratios from the responses to the input
location in the test configuration

Use the ratios to determine what the ideal input spectral density would be
to obtain each response

Use the least square of the multiple inputs to determine the final input

II
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41 X-Dir Least Squares Input
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42 Y-Dir Least Squares Input
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43 X-Dir Least Squares Straight Line Test Specification Responses
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44 Y-Dir Least Squares Straight Line Test Specification Responses
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Take Away from Input Determined from Least Squares Fit to
45 Match Test Article Responses

Can help match responses better

Input likely will not match reference data at the input location as well

Developing straight line specification can take away some of the ability to match
responses

Should be conservative at the response locations

Can't get all of the responses exactly right. Limited to one target response.

By itself, doesn't give an indication of how representatively the damage mechanism
from the comparable load in the assembly is being engaged



46 Proof of Concept Field Hardware

System was Modal Analysis Test Vehicle (MATV)

Hardware was developed by the Atomic Weapons
Establishment, AWE, UK

Component is the removable component (RC), a round
robin test article developed for the dynamic
environments community ESTECH/SAVE/IMAC



47 Acoustic Field Test and Instruments

The acoustic test was performed to 147
dB

Data were gathered on 4 triax
accelerometers on the RC



48 Laboratory Hardware

Another RC was mounted on a steel plate and instrumented with 4
triax accelerometers in the same locations as the field test as well as 4
triax accelerometers on the corners of the plate.



49 Transform to Rigid Body Modes and Fixed Base Modes

Modal Craig-Bampton procedure transforms free-free modes to a set of fixed-base
(p) modes + rigid-body (s) modes

Free-free modal params. 
x = (IN

Mree,r —W2 + i2(free,r Wfree,rW)qr

Fixed-base shapes: 

0

Transformation 

q = [Tp Ts] fl)s}

Rigid-body shapes: 

Mayes, Randall L., "A Modal Craig Bampton Substructure for Experiments, Analysis, Control and
Specifications", Proceedings of the 33rd International Modal Analysis Conference, Orlando, FL, February
2015, paper number 353.



50 Better Visualization of RC Fixed Base Modes from FE Model
1

Here are the five fixed base mode shapes active up to 2000 Hz

c3 ra
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51 Results from l DOF X axis input extended to physical ASDs

Transmissibilities were calculated with buzz test from the RC accelerometers to the
rigid base DOF inputs (X,Y,Z,RX,RY,RZ)

Acceleration from MATV in X direction about 3 inches away from RC was used as
input in X direction only

x



Results from 1 DOF X input analytically extended
52  ASD for 1X

ASDs from Acoustic Test-blue; 1 DOF shaker-red
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53 Results from 6 DOF test to control (50-2000 Hz) to 12 x 12
acoustic test cross spectral matrix (Paripovic/Nelson/Schultz)
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Results from 6 DOF test to control to 12 x 12 acoustic test
54 cross spectral matrix — page 2
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55  Wrap-up for base mounted component modal response

Even though system response may be quite complex, a few fixed base component
modes with rigid body modes may represent the component field response.

Physical insight is available with a small number of component fixed base mode
shapes.

Strain (and its damage) is captured in fixed base mode shapes and their modal DOF.

Rigid body accelerations are defined by the base laboratory input.

MDOF and SDOF laboratory base inputs can be tailored to best match field
response on component.

Matching fixed base modal responses with tailored base input provides better
simulation on entire component than response limiting which can only address a
few locations.

Whatever specification is used, knowing the fixed base modal field response and the
fixed base modal specification response allows one to quantify the conservatism.

cJ


