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2 ‘ Emulation + Analytics = Emulytics
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SECURE is integrating the mathematics of uncertainty quantification
with emulytics to improve cyber experimentation.




What is Uncertainty Quantification?

*Uncertainty Quantification (UQ) 1s the process of characterizing all uncertainties that could affect
the results of the cyber experimental runs.

*Once the uncertainties are identified and characterized as “input uncertainties”, they are propagated
(e.g. mapped) through the experiment to obtain uncertainties on the results (“output uncertainties”).
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What is Experimental Design?

*Experiment design involves the selection of a set of experimental parameter settings at which one
will run the cyber experimental model (e.g. various choices of number of cores per machine, protocols
and environment settings, packet size of traffic, bandwidth of links, etc.)

*The goal of experimental design is to generate an “ensemble” of runs, where each run itself may
involve replicate runs or not.

*Experiments are often tailored to address a specific question, such as: does the packet size matter
when looking at packet response time on a network with sufficient bandwidth?

*There are a variety of design criteria.
* Some experiments are space-filling (Monte-Carlo sampling and variations)
* Some designs optimize some property of the run matrix, X.

* A D-optimal design minimizes the determinant of the information matrix [XT X]™1 which results in
maximizing the information content of the parameter values. A G-optimal design minimizes the maximum
variance of the predicted values from a regression fit built on the dataset X.

There is significant overlap between UQ and experimental design. Both involve exploring

the parameter space. UQ is more focused on distributional mapping.




5 & Typical Workflow

Think about the advantages of a
structured vs. random sample design

Think about the question you want
to address

Computational cost is a big factor

Additional
designs
needed?

Identify the
experimental question
and system of interest

Identify input
parameters for the
study

* Characterize the input

parameters
(distributions or levels)

Identify parameter
regions of interest

Generate the
experimental design
(structured or sampled)

Perform the runs for
the experimental
design

Postprocess the results
for each run

Analyze the results
across all the runs




6 More definitions )

*Sensitivity analysis (SA) is the process of identifying the most significant factors or variables affecting
the uncertainty of the cyber model predictions

*Over the past few decades, the computational simulation community has developed a strong emphasis
on Verification and Validation activities to build credibility in scientific computing. A study by the
National Research Council at the National Academies issued a report outlining the mathematical and
statistical foundations of V&V and UQ as primary activities supporting the reliability of computational
models [1]. We take as definitions those outlined in [2]:

J Verification is the process of assessing software correctness and numerical accuracy of the solution to
a given mathematical model.

J Validation is the process of assessing the physical accuracy of a mathematical model based on
comparisons between computational results and experimental data.

1. National Research Council. Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of

Verification, Validation, and Uncertainty Quantification. Washington, DC: The National Academies Press, 2012.
https://doi.org/10.17226/13395.

2. Oberkampf, WL. and C.J. Roy. Verification and Validation in Scientific Computing. Cambridge University Press, 2010.
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A few more things

*Factorial design: A factorial design is an experimental design that samples the full combination of all
parameters.

* Thus, if there were 3 parameters and each had 5 allowable values or levels, a full factorial design would involve
5%5*5 = 125 runs.

* A fractional factorial design only involves a subset of the full factorial.

* A tull factorial design is an orthogonal array and can be used for main effects analysis

*Replicates. A replicate refers to running the same set of experimental settings multiple times to see
how the response varies with-in that setting. A replicate can also be called an 1terate.
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Dakota: Toolkit of Sensitivity analysis, UQ, and experimental design methods to drive

external codes

v
Inputs

> DAKOTAL

System Specification
* Devices
Configuration
Topology
Connectivity
Physical Processes

Threat Scenario:

e Actual malware

» Specify threat effect
(e.g., kill RTU1)

 Red Team

Emulation Platform:
VMs, HITL, Simulation

Outputs

Lots of options...

Packets

Host data
Network data
Physical Processes

|

Dakota available at: https://dakota.sandia.gov I



9 I Example: Denial of Service Amplification Attack with Full Factorial Parameter Study
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10 I Example: Denial of Service Amplification Attack with Full Factorial Parameter Study

Pareto Chart of the Standardized Effects
(response is TargetCPU_MaxUtilization, o = 0.05)
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Issues with performing experiments on cyber-emulations

*Emulations may be difficult and time-consuming to set up. For every sample, a number
of virtual machines has to be instantiated, initialized, and start communicating with each
other.

*Running emulations may also be expensive. If one is emulating a large cyber network
with hundreds or thousands of nodes, this will require significant time.

*The UQ community has recently been investigating “multi-fidelity” methods, where
many runs (1000s) of a low-fidelity are performed to augment a relatively few (tens) of

runs of a high fidelity model.

°In the context of cyber modeling, a network simulator or discrete event model might be
the low-fidelity model and the emulation the high fidelity one.

*We are currently investigating the feasibility of multifidelity methods for cyber models.



12 I Multifidelity UQ

Sampling: Most common method to perform uncertainty analysis. Can handle nonlinearities,
discontinuities, etc. but has a slow convergence rate.
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13 1 Multifidelity UQ

Whenever a numerical problems cannot be resolved with infinite accuracy (discretization error),
the MC estimator for a specific Mth level

C def 1 ZQ (i)
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14 | Multifidelity UQ

Pivotal idea:

» High-fidelity models are costly, but accurate
» low-bias estimates

» Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates

Single Fidelity

Multi Fidelity
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15 1 Multifidelity UQ

Two sources of error in the Mean Square Error:

E[(@i% —E[Q)?] = Var(

Qi) + (E[Qu - Q)°

» Sampling error: replacing the expected value by a (finite) sample average, i.e.

wr___f BMC Var \' (-! J
v ar ( (Q'}‘ILN ) = T

» Model fidelity (e.g. discretization): finite accuracy

Accurate estimation = Large number of samples evaluated for the high fidelity model

A Var(Qm)
Ewm—%%NJiEmN@M

In our network application we operate under the assumptions that
» The emulytics is the highest unbiased fidelity model, i.e. (E[Qwm — Q])% = 0

» Our goal is to solely reduce the variance of the estimator by introducing low-fidelity
evaluations




16 | Multifidelity UQ ()

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is
generated by adding M unbiased terms to the MC estimator

QY =@+ i Qv (Qz - M)

71—l

> Q,; MC estimator for the ith low-fidelity model
» 11; known expected value for the ith low-fidelity model

> o = [oy,...,ay]T set of weights (to be determined)

Let's define
» The covariance matrix among all the low-fidelity models: C € RM*M

» The vector of covariances between the high-fidelity @ and each low-fidelity @;: ¢ € RrRM

(Q. Qi)
The optimal weights are obtained as a* = —C !¢ and the variance of the OCV estimator
War(@w) = Var (Q) (1 — ETC_IE)
=Var(Q) (1 — Rpey), 0 < Rpey < 1.

_ For a single low-fidelity model: R%CV—I = p%
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17 I Demonstration of multifidelity approaches to network models: http packet response &

Network Configuration

» 1 client - 1 server (possible to extend to multiple clients) Host Userland Host Userland
» 100 Requests HTTP HTTP
Server Client

Uncertain Parameters
» DataRate ~ U (5,500)Mbps Lot Host OS

n
» ResponseSize ~ Inl/ (500, 16 x IOG)B [ T .
1Gbps Switch

Fidelity definition
» minimega — HF: 100 Requests (average over 10 repetitions)
» ns3 — LF: 10 Requests (Delay 50ms)

> ns3 - LF": 1 Requests (Delay 5ms) Relative cost between models

Correlation between models Model Cost
HF LF LF* HE 1

HF 1 0.86 0.90
LF | 086 1 099 LF 0.016
LF* 0.90 0.99 1 LF* 0.002




18 I Multifidelity Results i
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Graphs show 4-fold reduction in variance when estimating the mean number of http requests
completed per second for the same computational budget
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Conclusions i)

*Computational workflows around Emulytics models are starting to be developed similar to what the
computational simulation community has done.

*Uncertainty quantification and experimental design are important components in understanding the
sensitivities of a model and identifying the range and distribution of model output.

*There are several issues performing UQ for emulations, including replicability and large variation in
performance across runs; difficulty of setting up multiple emulations concurrently; and large,
discrete parameter spaces.

*The use of new approaches to UQ such as multifidelity methods is interesting and worthy of further
investigation.



