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2 Emulation + Analytics = Emulytics
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3 What is Uncertainty Quantification?

Uncertainty Quantification (UQ) is the process of characterizing all uncertainties that could affect
the results of the cyber experimental runs.

•Once the uncertainties are identified and characterized as "input uncertainties", they are propagated
(e.g. mapped) through the experiment to obtain uncertainties on the results ("output uncertainties").

Forward UQ: propagate uncertainties on inputs to uncertainty on predictions
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4 1 What is Experimental Design?

•Experiment design involves the selection of a set of experimental parameter settings at which one
will run the cyber experimental model (e.g. various choices of number of cores per machine, protocols
and environment settings, packet size of traffic, bandwidth of links, etc.)

•The goal of experimental design is to generate an "ensemble" of runs, where each run itself may
involve replicate runs or not.

•Experiments are often tailored to address a specific question, such as: does the packet size matter
when looking at packet response time on a network with sufficient bandwidth?

•There are a variety of design criteria.
• Some experiments are space-filling (Monte-Carlo sampling and variations)

• Some designs optimize some property of the run matrix, X.

• A D-optimal design minimizes the determinant of the information matrix [XTX]-1 which results in
maximizing the information content of the parameter values. A G-optimal design minimizes the maximum
variance of the predicted values from a regression fit built on the dataset X.

There is significant overlap between UQ and experimental design. Both involve exploring
the parameter space. UQ is more focused on distributional mapping.



5 Typical Workflow

• Think about the advantages of a
structured vs. random sample design

• Think about the question you want
to address

• Computational cost is a big factor
Additional
designs
needed?

Identify the
experimental question
and system of interest

II Identify input
parameters for the

study

Characterize the input
parameters

(distributions or levels)
1

dentify parameter
regions of interest

Generate the
experimental design

(structured or sampled)

1
IPerform the runs f

the experimental
design

1
Postprocess the results

for each run

Analyze the result
across all the run



6 More definitions

•Sensitivity analysis (SA) is the process of identifying the most significant factors or variables affecting
the uncertainty of the cyber model predictions

•Over the past few decades, the computational simulation community has developed a strong emphasis
on Verification and Validation activities to build credibility in scientific computing. A study by the
National Research Council at the National Academies issued a report outlining the mathematical and
statistical foundations of v&V- and UQ as primary activities supporting the reliability of computational
models [1]. We take as definitions those outlined in [2]:

❑ Venfication is the process of assessing software correctness and numerical accuracy of the solution to
a given mathematical model.

CI Validation is the process of assessing the physical accuracy of a mathematical model based on
comparisons between computational results and experimental data.

1. National Research Council. Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of
Verification, Validation, and Uncertainty Quantification. Washington, DC: The National Academies Press, 2012.
https://doi.org/10.17226/13395.

2. Oberkampf, W.L. and C.J. Roy. Verification and Validation in Scientific Computing. Cambridge University Press, 2010.



7 1 A few more things

•Factorial design: A factorial design is an experimental design that samples the full combination of all
parameters.

Thus, if there were 3 parameters and each had 5 allowable values or levels, a full factorial design would involve
5*5*5 = 125 runs.

• A fractional factorial design only involves a subset of the full factorial.

• A full factorial design is an orthogonal array and can be used for main effects analysis

•Replicates. A replicate refers to running the same set of experimental settings multiple times to see
how the response varies with-in that setting. A replicate can also be called an iterate.



8
Dakota: Toolkit of Sensitivity analysis, UQ, and experimental design methods to drive
external codes

I
Inputs

System Specification
• Devices
• Configuration
• Topology
• Connectivity
• Physical Processes

Threat Scenario:
• Actual malware
• Specify threat effect

(e.g., kill RTU1)
• Red Team

[)1> DAKOIA)A

Emulation Platform:
VMs, HITL, Simulation

*
Outputs

Lots of options...
• Packets
• Host data
• Network data
• Physical Processes

Dakota available at: https://dakota.sandia.gov



9 Example: Denial of Service Amplification Attack with Full Factorial Parameter Study
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10 Example: Denial of Service Amplification Attack with Full Factorial Parameter Study
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11 Issues with performing experiments on cyber-emulations

Emulations may be difficult and time-consuming to set up. For every sample, a number
of virtual machines has to be instantiated, initialized, and start communicating with each
other.

•Running emulations may also be expensive. If one is emulating a large cyber network
with hundreds or thousands of nodes, this will require significant time.

•The UQ community has recently been investigating "multi-fidelity" methods, where
many runs (1000s) of a low-fidelity are performed to augment a relatively few (tens) of
runs of a high fidelity model.

In the context of cyber modeling, a network simulator or discrete event model might be
the low-fidelity model and the emulation the high fidelity one.

We are currently investigating the feasibility of multifidelity methods for cyber models.



12 Multifidelity UQ

Sampling: Most common method to perform uncertainty analysis. Can handle nonlinearities,
discontinuities, etc. but has a slow convergence rate.

Let's use MC to compute the value Tr =
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1 3 Multifidelity UQ

\Whenever a numerical problems cannot be resolved with infinite accuracy (discretization error),
the MC estimator for a specific Mth level
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14 Multifidelity UQ
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15 Multifidelity UQ

Two sources of error in the Mean Square Error:

E [C6414-1:N — E RD2] Val* (433rN") [QM Q]}2

Po' Sampling error: replacing the expected value by a (finite) sample average, i.e.

V ar (4IZN) = V arN(Q) 

IP- Model fidelity e. . discretization): finite accuracy

Accurate estimation Large number of samples evaluated for the high fidelity model

E [QM] — 0c:iv
Var(Qm).Ar{0,

In our network application we operate under the assumptions that

IP. The emul}rtics is the highest unbiased fidelity model, i.e. (E [Qm — Q]}2 = 0

Ir. Our goal is to solely reduce the variance of the estimator by introducing low-fidelity
evaluations



16 Multifidelity UQ

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is
generated by adding M unbiased terms to the MC estimator

cv
Q = Q — /ii)

i=i

10. Qi MC estimator for the ith low-fidelity model

known expected value for the ith low-fidelity model

lib• a =   iN_r]rl' set of weights (to be determined)

Let's define

IP. The covariance matrix among all the low-fidelity models: C E Rm xm

10- The vector of covariances between the high-fidelity Q and each low-fidelity Qi: c E Rm

10- c = c/Var(Q) = [p1Var(Qi) , . . , pmVar(Qm)]T, where Ri is the correlation coefficient

(Q, Qi)

The optimal weights are obtained as a* = —C—lc and the variance of the OCV estimator

Var. (etiv) = Var (Q) (1 — eTC le)

= Var (Q) (1 — /41,), < RLIT < 1.

For a single low-fidelity model: 4cv-_1 = pi



17 Demonstration of multifidelity approaches to network models: http packet response

Network Configuration

lb- 1 client - 1 server (possible to extend to multiple clients)

■ 100 Requests

Uncertain Pararneters

■ DataRate 11(5, 500)Mbps

II. ResponseSize 1/111(500.16 x 106)B

Fidelity definition

■ minimega HF: 100 Requests (average over 10 repetitions)

■ ns3 LF: 10 Requests (Delay 50ms)

■ ns3 LF*: 1 Requests (Delay 5ms)

Correlation between models
HF LF LF*

HF 1 0.86 0.90
LF 0.86 1 0.99
LF* 0.90 0.99 1

Host Userland

HTTP
Server

Host OS

Hast Userland

HTTP
Client

Host DS

•••

1 G bps Switch

Relative cost between models

Model Cost

HF 1

LF 0.016

LF* 0.002



18 Multifidelity Results
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19 Conclusions

•Computational workflows around Emulytics models are starting to be developed similar to what the
computational simulation community has done.

Uncertainty quantification and experimental design are important components in understanding the
sensitivities of a model and identifying the range and distribution of model output.

There are several issues performing UQ for emulations, including replicability and large variation in
performance across runs; difficulty of setting up multiple emulations concurrently; and large,
discrete parameter spaces.

•The use of new approaches to UQ such as multifidelity methods is interesting and worthy of further
investigation.


