
In-Situ Visualization for the Large Scale Computing Initiative
Milestone

Jeffrey A. Mauldin
Sandia National Laboratories

Albuquerque, New Mexico

jamauld@sandia.gov

Anthony M. Agelastos
Sandia National Laboratories

Albuquerque, New Mexico

amagela@sandia.gov

ABSTRACT

The Sandia National Laboratories (SNL) Large-Scale Computing
Initiative (LSCI) milestone required running two parallel simula-
tion codes at scale on the Trinity supercomputer at Los Alamos
National Laboratory (LANL) to obtain presentation quality visu-
alization results via in-situ methods. The two simulation codes
used were Sandia Parallel Aerosciences Research Code (SPARC)
and Nalu, both fluid dynamics codes developed at SNL. The codes
were integrated with the ParaView Catalyst in-situ visualization
library via the SNL developed Input Output SubSystem (IOSS). The
LSCI milestone had a relatively short time-scale for completion of
two months. During setup and execution of in-situ visualization
for the milestone, there were several challenging issues in the ar-
eas of software builds, parallel startup-times, and in the a priori
specification of visualizations. This paper will discuss the milestone
activities and technical challenges encountered in its completion.

C CS CONCEPTS

• Computing methodologies —> Massively parallel and high-
performance simulations; Computer graphics; • Software and
its engineering —> Massively parallel systems.

KEYWORDS

In-situ, Scientific Visualization

ACM Reference Format:

Jeffrey A. Mauldin, Thomas J. Otahal, Anthony M. Agelastos, and Stefan P.

Domino. 2018. In-Situ Visualization for the Large Scale Computing Initiative

Milestone. In Proceedings of ISAV '19: In-Situ Infrastructures for Enabling

Extreme-Scale Analysis and Visualization (ISAV '19). ACM, New York, NY,

USA, 5 pages. https://doLorg/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISAV '19, November 18, 2019, Denver, CO

© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/1122445.1122456

Thomas J. Otahal
Sandia National Laboratories

Albuquerque, New Mexico

tjotaha@sandia.gov

Stefan P. Domino
Sandia National Laboratories

Albuquerque, New Mexico

spdomin@sandia.gov

STATEMENTS AND DISCLAIMERS

Sandia National Laboratories is a multimission laboratory managed
and operated by National Technology & Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy's National Nuclear Security
Administration under contract DE-NA0003525.

This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper
do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

1 INTRODUCTION

The generation of scientific analysis and visualizations spans a
continuum from highly specific and tightly coupled with the simu-
lation code, in-situ visualization [4], to highly general and loosely
coupled through output data files, post-processing visualization. At
each point along this continuum, there is a tradeoff among runtime,
output frequency, and data size. At the most tightly coupled point,
the output might be a single number. This number represents an
extremely specific analysis, takes up little space on disk, and might
be computed at a very high rate. At the most loosely coupled point,
the entire simulation data set might be saved; however, this data set
takes up a large amount of disk space, so it can only be performed
a few times over the course of the simulation.
The LSCI targeted running key SNL codes at very large scales

on the LANL Trinity supercomputer to obtain high-quality visual-
izations. High-quality visualization is necessary to communicate
and emphasize the value of these codes to the Advanced Simula-
tion and Computing (ASC) program. Two SNL codes, SPARC [6]
and Nalu [5], were selected for in-situ visualization because prior
integration work with ParaView Catalyst [1] at smaller scales had
been successful. For LSCI, large scale was defined as using more
than half of the Knight's Landing (KNL) CPU architecture nodes
on Trinity.

2 DESCRIPTION OF TRINITY

The Trinity supercomputer is a single parallel computing system
composed of two processor architectures. There are 9,436 compute
nodes that each contain 2 Intel Haswell processors supporting
64 hyper-threads per node. The remaining 9,984 nodes contain
Intel Xeon Phi processors KNL and support 272 hyper-threads per

SAND2019-12759C

ISAV '19, November 18, 2019, Denver, CO Jeffrey A. Mauldin, Thomas J. Otahal, Anthony M. Agelastos, and Stefan P. Domino

node and also have an extra vector instruction unit per core. Intel
compilers support additional vector optimization flags to make use
of the KNL architecture.

Both Haswell and KNL processors have an extra vector instruc-
tion unit per core; for Haswell, it's an AVX2 vector unit, and for
KNL it's an AVX512 vector unit that supports wider vector opera-
tions. The Intel compilers support additional vector optimization
flags to automatically make use of the vector unit in addition to
explicit vector instructions within the code.

3 IN-SITU VISUALIZATION USING
PARAVIEW CATALYST

Catalyst is a library component of the ParaView scientific visu-
alization application that enables applications to perform in-situ
visualization. In order to use Catalyst, application developers create
an integration that converts their applications' data structures to
and from equivalent data structures in Catalyst. They also insert
a call to the Catalyst library when visualization output is desired,
normally at some fixed interval of simulation time-steps. In-situ
visualization is executed across all MPI ranks on which the sim-
ulation is running, and the data for visualization is immediately
available in the process memory which is being shared by Catalyst
and the simulation. The output from Catalyst is typically a set of
parallel rendered images.
An additional consideration when using Catalyst is how to tell

Catalyst what to do when the simulation passes control over to
Catalyst. There are three options available. The easiest option is to
export a Python script from the ParaView GUI when a surrogate for
the larger simulation problem is loaded. The export option does not
allow for robust error checking in terms of inputs, nor a mechanism
to cleanly report error conditions back to the simulation. The second
option is to directly write Python scripts to control Catalyst for
a specific purpose. Python scripting offers flexibility, but requires
time and more detailed knowledge of the internal Catalyst pipeline
API. The third option, which is the least used and documented, is
to write a C++ program to control Catalyst. This option trades the
flexibility of Python for the better performance of compiled C++.

4 CONTROLLING CATALYST WITH
PHACTORI

A data flow language called ParaView Higher level AbstraCTiOn
scRipting Interface (Phactori) was created during prior work with
Catalyst. Phactori allows users to express their visualization as
a data flow that starts from the simulation input to Catalyst. A
Phactori data flow can include chains of common data visualization
operations such as clip, slice, and contour. The data flow typically in-
cludes various camera setups, data color mapping, image sequence
output specification, and data product output specification (e.g. out-
put the results of a slice, clip, exterior surface filter, or contour as
a 3D dataset). A text file containing Phactori commands is then
parsed by a Python implementation of the Phactori language at
Catalyst run-time. The parsing and unit-testing of the Phactori im-
plementation ensure that analysts can have confidence Catalyst will
produce the desired results each time the simulation passes control
to it. In contrast, the export of scripts from ParaView is prone to sub-
tle errors born out of the complexity and completeness of ParaView,

such as using data which does not match the simulation output thus
getting scripts that do not work, constructing a highly complex
workflow that has mysterious problems, creating a programmable
filter which crashes on the in-situ callback, doing operations which
turn out not to scale well or bloat memory usage, etc. Phactori also
passes error information back to the simulation in the event of
unexpected behaviors. Phactori makes generating multiple sets of
images from different perspectives and variable colorings easier
than using the ParaView GUI to export Python scripts. Also, the
in-situ visualization development workflow is more tractable using
Phactori, allowing for rapid "simulation run/adjust the visualization
script" cycles at low node counts.

Recognizing the need for a higher level of abstraction for defin-
ing in-situ operations on HPCs is not unique to this project. Cinema
(reference) is a tool somewhat similar in nature to Phactori. The
general nature of Cinema is to produce a database of data products
including images and 3D output. Cinema includes techniques for
specifying multiple camera angles, 3D data products, and compos-
able image-like data fields where the mesh cell or point data is stored
rather than fixed color values. It is easy to envision Phactori specify-
ing Cinema databases as an output format (either using Phactori or
Cinema itself to specify camera angles) or having Cinema employ
a Phactori script to produce a particular data product.

5 CATALYST IN NALU

For some codes, in particular Nalu and Sierra (the Sandia Sierra
Framework), Catalyst is integrated via a run-time plugin (using
dlopen()) to access the program at runtime.
The main advantages to this strategy are (1) If not used, the

binary code is not loaded, so the code footprint is zero and (2) the
plugin can be managed in a separate build system. A separate build
system is sometimes advantageous because it offloads the complex
Catalyst build system development and maintenance from the sim-
ulation development team, obviates integrating complex Catalyst
building into complicated legacy non-cmake build systems, and
keeps build and deployment issues from Catalyst from affecting
the simulation and vice versa. The main disadvantages are (1) the
plugin is usually not built automatically along with the simulation
engine and (2) it forces the use of dynamic loading. On some HPCs
static binaries are distributed rapidly using specialized communi-
cation setups, while shared library loads can require all nodes to
independently open and read the shared libraries and this process
scales poorly at high node counts.

Over time, this plugin has been moved into the Sandia Engineer-
ing Analysis Code Access System (SEACAS) (see
https://github.com/gsjaardema/seacas), in the IOSS (input/output
system) library. The eventual plan is to make this plugin a part of
the standard SEACAS build.

Figure 2 is an example image generated from Nalu via in-situ
visualization on knl nodes.

6 CATALYST IN SPARC

Prior to Catalyst integration into SPARC, Catalyst was only in-
tegrated into simulation engines which used unstructured grids.
SPARC can do both unstructured and structured grids, but goal was
to do in-situ visualization with the structured grids, so new work

In-Situ Visualization for the Large Scale Computing Initiative Milestone ISAV '19, November 18, 2019, Denver, CO

was necessary to map the SPARC structured data into VTK/ParaView
structured data formats.

At project start time SEACAS handling of structured grids in
parallel was not complete so Catalyst was directly integrated into
SPARC, i.e. not via a plugin. Eventually this integration will move to
a plugin architecture as well. Since there was not a run-time plugin
restriction, a statically linked version of the Catalyst libraries was
created (with considerable effort) which allowed examination of
differences between the startup times and run times of the statically
linked versions of the code and the dynamically linked versions
of the code on Trinity. As the structured version of this code is
moved into SEACAS it is desirable to maintain the options to build
statically, dynamically, and as a run-time plugin.

Figure 1 is an example image generated from SPARC via in-situ
visualization on KNL nodes.

7 DEVELOPING VISUALIZATIONS USING
SMALL SCALE SIMULATIONS

One of the difficulties of in-situ visualization is generating an ap-
propriate visualization setup prior to generating output data. Given
the size of the simulations performed as part of this effort, there
was only the opportunity to run the simulation at scale a handful
of times.
One important technique for mitigating this limitation is using

either small-scale versions of the simulation problems or small-
scale datasets for generation of the visualization input files. During
the final simulations at scale, there was never a case where a visual-
ization script which worked at lower scales failed to work properly
at higher scales.

8 RESOURCE IMPACT OF IN-SITU
VISUALIZATION ON SIMULATION

An important issue is what resources the in-situ visualization uses
relative to the simulation calculations. The following questions are
used to address this issue. It is worthwhile to consider both the
absolute results and the relative resources used by the simulation
calculation and the in-situ visualization calculation.

(1) What is the memory impact of the additional binary code?
(2) What is the memory impact of the run-time operation of the

in-situ visualization?
(3) How is the initial simulation startup time affected by the

presence of the in-situ visualization code (i.e. how long to get
in to "main()", loading all the static code and binary libraries)?

(4) How long does the simulation take to get from initial startup
to the first time-step? (mesh decomposition, mesh loading,
or restart time)

(5) How long does the simulation code take to execute its first
time-step?

(6) How long does the simulation code take to execute subse-
quent time-steps?

(7) How long does the in-situ visualization take to render at
first callback (thus including any additional dynamic library
loading)

(8) How long does the in-situ visualization take to render at
subsequent callbacks?

For SPARC and Nalu in this particular case study, memory was not
an issue, as engineers were dividing the mesh into a large number
of nodes relative to the size of the mesh, with only a few thousand
or tens of thousands of elements per process, and only a few million
or few hundred thousand cells per node. Therefore (1) and (2) are
not considered in this paper, though it is recognized that these ques-
tions are of considerable interest to Nalu, SPARC, other simulation,
and in-situ developers. Using profiling tools or instrumenting the
code to obtain interesting fine-grained information such as how
much time and how much memory are used by particular oper-
ations (e.g. exterior surface, slice, clip, contour, rendering, image
composition) has not yet been done but is an interesting near-term
objective. Qualitatively it appears that memory usage by Catalyst
is not a show-stopping issue but may require mitigation strategies
in various circumstances, such as working to reduce build size and
avoiding in-situ operations which produce results which are of a
similar size to the whole simulation mesh.

Question 3, initial startup time comes into play because time
to load binary runtime libraries can become large at scale. In fact,
this time was not too noticeable in any situation up to at least 1000
nodes, but it can be very noticeable at 5000 nodes. Prior to this
milestone Catalyst was used exclusively as a shared object binary
build or as a run-time plugin, both of which require loading of
shared objects at run time. This HPC compute platform (Trinity)
has special capabilities to distribute the executable as part of an
Message Passing Interface (MPI) job faster than dynamic binaries
which are loaded on demand by every process in parallel. One
option for mitigating this is building everything statically; a difficult
task as previously mentioned.

If building a single executable statically is not an option, then
reducing the number of libraries and files that need to be loaded
will reduce the startup time. Catalyst supports compiling "Editions",
which only compile those components necessary for producing a
given visualization instead of compiling and linking all of Catalyst
[3]. Python supports freezing, which compiles all the python scripts
and shared objects necessary for a given python script to run into
a single executable [2].

Moving to Catalyst Editions and freezing python greatly reduced
the number of libraries from 231 to 35. Linking an entirely static
build of the Catalyst libraries also reduced this problem.
One show-stopping issue we overcame was at question 7, the

first in-situ callback. It seems obvious in retrospect, but if the in-situ
engine is producing serial output of any form to standard output
or to one file, including warnings, then the system would work
reasonably well on up to about 500 nodes, but grind to a halt at 1000
or 2000 nodes. Work was necessary to guarantee no warnings or
other serial output on a few hundred node count, and when all this
serial output was eliminated scaling to 5000+ nodes was possible.

Table 1 essentially is the effort to answer questions 3-8 for SPARC
on this HPC platform. We were executing 50 SPARC timesteps for
every Catalyst callback. Notable observations are: 1) In-situ visual-
ization results are produced at all scales in all cases. It is useable
(but not necessarily preferable) in all build configurations. 2) Static
builds make a large difference in binary load times. For the worst
shared object case, these load times could take a noticeable per-
centage of the overall run time allocation. 3) Mesh decomposition
time dominates over shared library load time, even in the case with

ISAV '19, November 18, 2019, Denver, CO

Figure 1: In-situ generated image from a SPARC 3D simula-
tion of a cylinder in an airflow. Slice, colored by X velocity.

1200

1000

800
E

-s
-0 o 600

400

5

200

•••••• 231 shared objects
- 35 she' ed objects

completely static
.............

PAO

.........

1,280 2,560

Jeffrey A. Mauldin, Thomas J. Otahal, Anthony M. Agelastos, and Stefan P. Domino

Figure 2: In-situ generated Nalu simulation image of a hot air
jet impinging on a surface. Isosurface at nonzero velocity, col-
ored by temperature.

........ 1

5,120

4800

4200

20.-og 3600

3000

0.E 2400

12 :16: 1800
.E
r2 '6' 1200
2

— 600

R40 1,280

.•••

2,560 5,120

18

16

14

12

Pc 110

-2 8
g 8
.E 6

4

2

. •

*

g40 1,280 2,560 5,120

g4 0 1,280 2,560 5,120

1200

1000
rn

800

LA g
u
in

t'n • 200

600

400

,
...................

• •

............

840 1,280 2,560 5,120

18

16

2 • 14

12
17

10
-0 0

73 :I; 8

6

c
4

.......

.......

6)40 1,280 2,560

Figure 3: Strong Scaling Of Startup And Run Times (X Axis is number of ATS-1/Trinity Knight's Landing Nodes)

231 shared libraries. 4) SPARC execution time per-timestep was
about the same in all cases 5) Besides faster startup, the rendering
times were twice as fast in static builds. This was a surprise, as the
expectation prior to the timings was that load time costs might be
high for shared libraries but the additional overhead for runtime
operations like function calls would be minimal It is unknown
why this slowdown occurs. One theory is that there is a penalty
for function calls which cross a library boundary and there are 231
libraries.

Runs at 640, 1280, 2560, and 5120 nodes with the same mesh
provide data for a strong scaling study with the results shown in
Figure 3. (No comprehensive weak scaling study was conducted due
to issues with getting simulation runs through the HPC queue into
execution in a timely fashion.) The "Later Simulation Timesteps"

5,120

plot shows the advantageous scaling speedup effects during the
simulation execution. The "Later In-Situ Callbacks" plot shows that
the time taken by the in-situ visualization is essentially flat as the
node count increases, suggesting that simulation engineers will
want to make in-situ callbacks less frequently at higher scales to
ensure that the in-situ callbacks do not utilize a high percentage
of the overall run time. The startup/first-time plots show how in-
creasing node counts most adversely affect the 231 shared object
build of SPARC with an interesting jump in time from 1280 nodes
to 2560 nodes. Note that the mesh decomposition time dominates
startup time at all node counts for all builds. According to SPARC
developers, newer SPARC builds may reduce this time significantly.

In-Situ Visualization for the Large Scale Computing Initiative Milestone ISAV '19, November 18, 2019, Denver, CO

Table 1: Timings at 5120 Nodes (Seconds)

timed item 231 shared
objects

35 shared
objects

completely
static

initial load
(to main)

885 176 95

main to first SPARC
timestep (mesh

decomposition)

4275 3619 3908

first SPARC

timestep

14 16 4

later SPARC

timestep

0.91 0.85 0.91

first in-situ

callback (6 images)

1072 208 129

later in-situ

callback (6 images)

10.9 4.6 4.7

9 CONCLUSION

The work during the LSCI milestone has demonstrated that Catalyst
is capable of producing high-quality visualizations in-situ when

coupled to two simulation codes running at scale, with acceptable
impact on the simulation performance.

Special attention was given to how the software was compiled,

and the load-time consequences of having many dynamic libraries

linked into the simulation executables. As the simulation size scaled-

up, it became necessary to use frozen Python to mitigate load-time

issues caused by large numbers of Python modules.

Using smaller scale simulation problem meshes and the Phactori

data flow language was essential in developing useful visualizations.

Iterations of simulation executions were very limited at full scale.

ACKNOWLEDGMENTS

The authors would like to express their thanks to Micah Howard and

Sam Browne for their help with SPARC. We extend our gratitude

to Kurt Ober and Ron Olfield for excellence in project initiation

and management, and give thanks Dave Karelitz for many helpful

suggestions and technical assistance.

REFERENCES
[1] Utkarsh Ayachit, Andrew Bauer, Berk Geveci, Patrick O'Leary, Kenneth Moreland,

Nathan Fabian, and Jeffrey Mauldin. 2015. ParaView Catalyst: Enabling In Situ
Data Analysis and Visualization. In Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV2015).
ACM, New York, NY, USA, 25-29. https://doi.org/10.1145/2828612.2828624

[2] Utkarsh Ayachit and Pat Marion. 2013. Beat the heat by freezing Python in Par-
aView. https://blog.kitware.com/beat-the-heat-by-freezing-python-in-paraview

[3] Andy Bauer. 2014. ParaView Catalyst Editions: What Are They? https://blog.
kitware.com/paraview-catalyst- editions-what-are-they

[4] Andrew Bauer, H Abbasi, J Ahrens, H Childs, Berk Geveci, S Klasky, Kenneth
Moreland, P O'Leary, Veena Vishwanath, Brad Whitlock, and E. Wes BetheL
2016. In Situ Methods, Infrastructures, and Applications on High Performance
Computing Platforms. Computer Graphics Forum 35 (06 2016), 577-597. https:
//doLorg/10.1111/cgf.12930

[5] S. Domino. 2015. Sierra Low Mach Module: Nalu Theory Manual 1.0. Technical
Report SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited Re-
lease (UUR). Sandia National Laboratories. https://github.com/spdomin/NaluDoc

[6] Micah Howard and Srini Arunajatesan. 2016. SPARC v. 8/17/2016, Version 00.

