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Can we replicate exact flight conditions during ground testing without a

structural model?
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Objective: To replicate the
exact flight environment
during ground testing without

having to build a model by
reconstructing excitation
force.

System on 6 DOF shaker
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The typical approach for determining a shaker input relies on a finite
element model to compute a transfer function between DOFs

Build FEM and perform modal
correlation to test data

Obtain mode shapes and
mode frequencies

Force Reconstruction

Sandia’s Sum Weighted
Accelerations Technique

(SWAT): Assumes linearity
and relies on mode shapes

ATA’s Least Squares Force
Reconstruction: Assumes
linearity and operates in the
frequency domain

Image credit: ATA

Can we develop a pure data-driven approach that does not rely on a finite element model AND

does not assume linearity?




Recurrent neural networks were recently used to predict random
4 | vibration response of nonlinear systems
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A recurrent neural network used for speech generation was adapted to
5 I map random vibration response between DOFs

The Temporal Convolutional Network (TCN)

The WaveNet was developed for text-

ot @ @ @ 0 00000000 OG®EO®O to-speech generation.

Hidden - | | | | It is an autoregressive model that

Layer 0000000000 0O00O00O00O0 predicts one timestep at a time based
on the knowledge of the previous

Hiff;r: 0000000000 00O0O0 O states and inputs/outputs.

Hidden | ’ ' | ' |
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Instead of text and speech, the inputs

and outputs were accelerations
nt @ @ O 0 000000000000

measured at different locations on a
structure.

https://deepmind.com/blog/wavenet-generative-model-raw-audio/




6 I How Does The TCN Work?

To Skip Connection To Residual Block
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7 I TCN Dynamics Block Diagram
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Source of training data would come from component response during
ground test excitation to white noise
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9 I How many gauges are enough to find an exact mapping?

Idea: Pick the accelerometers with highest correlation to base acceleration
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10 I How many gauges are enough to find an exact mapping!

Idea: Pick the accelerometers with highest correlation to base acceleration
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The Temporal Convolutional Network (TCN) Predicted Response
""" ¥ Matched the Actual Test Data Well - Time Domain

e

2
: : 3 Actual

Including all 30 gauges results in g Pradiction
exact match with target data | B A |

i '

< aw sy 00 Y 00 £ £

§ = Yol

2 MY

& o

= =ola

s —.ﬂ- -] 00 E ) - 00

Datapoints

i o

-

3.

o0 330 - 0 3500 0 ko

The TCN was able to find a gauge-to-gauge transfer function without explicit knowledge of the

component.




The TCN Predicted Response Matched the Actual Test Data Well
Frequency Domain
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13 I What is the TCN learning?

020
g = o I 30 time si 1
; B nput: time signals
S a1 B 1) EE— ~ i | :
ul = o
& s
= 00
I 0o
T 01
005
g
2'02 010
015
0 5 10 15 2
e a3
015 e .
010
005 o1
000 &
-0.05
010 -
015 02 = .
0 5 0 5 p.3 0 5 10 5 2

' U 00s0

05 =\ 2
| \ a8 ooms

04— _— s w

i ] -

/ ‘ « 0

03 ‘.. — A - ' A k-]
f 9/ N 0055

02 =
E 0050

01 S
Z 9075

00
0 5 10 5 2 0 5 10 5 2
Timesteps




14 I What is the TCN learning?
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15 I What is the TCN learning?

ST AN TN e Input: 30 time signals
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16 I What is the TCN learning!?
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Input: 30 time signals

Network projects original time signals
onto a new space with 128 dimensions

New signals undergo series of
transformations

Network learns to discard most of the
new signals, except for 10

These 10 signals are combined into 3 final
time signals that match target output




Final operation is just linear combination of the 10 non-zero signals that
17 I the TCN found

015

The transfer
function was

decomposed into a
= ~ series of nonlinear

transformations
followed by linear
superposition.

Predicted response
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18 I Perlan 2 Glider Test Data

GVT data

g Flight data
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19 I Perlan 2 Glider Test Data: TCN vs. Least Squares
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20 I Conclusions

A new method was developed to solve the inverse problem of force
reconstruction to replicate tlight conditions in the time domain using
neural networks.

No need for a finite element model or explicit computation of transfer
functions or mode shapes

It can handle nonlinear response because it does not rely on linear
superposition

No spatial representation is given. The location of the applied forces
must be known or assumed.

Training requires sample data from ground test (could be white noise)
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Any Questions!
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