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POLYMER ENCAPSULANTS HARDEN FRAGILE COMPONENTS FROM
CRADLE TO GRAVE
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POLYMER ENCAPSULANTS HARDEN FRAGILE COMPONENTS FROM
CRADLE TO GRAVE

Encapsulation

Bubbles, voids

Cure

Cure + thermal
shrinkage

Rheometer, FEM models

Storage/Aging

Embrittlement
Incompatibilities

DMA,Instron, computational models

Transportation

Mechanical insult

Environments

Swelling,
decomposition,

thermal expansion

Computational models, Dynamic testing
Fiber Bragg Gratings, Crack Imaging

*Currently, models of component performance in environments
do not take into account manufacturing stresses



RAMAN SPECTROSCOPY

Explore Raman spectroscopy as a cradle-to-grave diagnostic

Inelastic scattering of light from molecular bonds

u = A (T. — To)2 + S, 0+ uo
Wavenumber shifts due to strain and temperature are additive

tyy
Rheo-Raman tools can quantitatively monitor curing
reactions simultaneously with rheology

Detect manufacturing stresses using rheo-Raman
device. Calibrate strain/Raman relationships

Raman detects chemical changes during
aging or environmental exposure
Calibrated strain/Raman relationships
quantify stresses in fielded components
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SYSTEM OF INTEREST
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()/\ EPON 828
0-CH2-0-1-012 Diglycidyl ether bisphenol A

76 wt%

Jeffamine D-230 polyetheramine
24 wt%

Rheo-Raman systems are ideal environments for calibrating
Raman shifts with strain

Precise mechanical control up to 50 N stress (axial)
Thermal control up to 300 °C
Exact height measurements

Carbon nanotubes added as stress tracer materials
2 — 10 nm diameter, 1 — 5 micron length, 0.01 wt%

Kotula 2016, Rev. Sci. Instruments

A custom interlocked box is placed around a

ThermoFisher coupled Rheo-Raman system
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VISCOSITY DEPENDENCE ON TEMPERATURE

Rheology measured at various temperatures:
Challenging due to fast cure times, axial stresses in rheometer
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Viscosity of liquid epoxy before cure depends on
temperature using an Arrhenius relationship.

Liquid viscosity is Newtonian.
Jeffamine lowers initial viscosity by almost an order of magnitude.
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EXTENT OF REACTION

Extent of reaction was previously measured as a
function of time and temperature using 3 isothermal
cures by differential scanning calorimeter (Adolf).

Legacy model:
1 ( 12.5kcallmol)

d
— 
t
= 3.3x106 RT .3 + 0(1_ — 01'5

min

Extent of reaction defined for Raman
spectra: 1 1254 / 1 1186 normalized between 0-1

1186 cm-1

12r cm-1
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Legacy model is plotted
alongside Raman results.

Reasonable data agreement,
collected alongside rheology.
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VISCOSITY MODEL

Using legacy expression for the extent of reaction, a fit

is created for the viscosity as a function of time and

temperature.

Mondy-Adolf Epoxy Model

1 ( 12.5kcal/mol\
= 3.3x106 RT (0 .3 + (1 — 01.5

dt min

—c1(T—Tg)

[1=1110(Tg) 10 C2+T-Tg (1 
_
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Time/T
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Fit to the measured viscosity is acceptable.
It is estimated that even greater success would be
gained using a new extent of reaction expression.
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CARBON NANOTUBES AS STRESS MARKERS

Low concentration (0.01 wt%) carbon nanotubes

added to EPON 828

Several well-studied peaks are available for analysis

D* peak stands apart from EPON 828 signal

550

500 -

450 -

400 -

350 -

300 -

.260 -

200 7

160 7

1 0 0 7

60

Pure EPON 828

EPON + CNTs

G+ and G-: Tangential mode. Sensitive to semiconducting or metallic
CNT. Polarizable, sensitive to pressure
D: First order scattering sp2 carbons, sensitive to laser energy
D* (or G'): Second overtone of D
Sensitive to temperature, pressure and mechanical deformation.
RBM: Radial breathing mode
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CALIBRATION: RAMAN SHIFTS OF CNT'S IN CURED EPON 828
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EPON 828 + 0.01% CNT is cured in a petri

dish at 70 °C and then exposed to axial

pressure at room temperature.

Sensitivity of Raman signal to pressure is

not strong.
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CALIBRATION: RAMAN SHIFTS OF CNT'S IN CURED EPON 828

Given a preshear, alignment of the nanotubes creates a
strong Raman signal.

Axial pressure creates an azimuthal tension that is

detectable by the Raman signal of the nanotubes.

Sensitivity of wavelength to strain
is increased at increased
temperatures
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STRESSES DURING CURE

Sample is cured at 70 C on rheometer after a preshear and
then exposed to 1 Hz, 1% strain oscillations

Gel point is observed after 1 hour

Raman signal detects compression in the carbon nanotubes
at the gel point (cure shrinkage).

Normal force is also measured by rheometer at this time.
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THERMAL EXPANSION OF A CONFINED SAMPLE

In practice, encapsulants are bonded to dissimilar materials

Temperature excursions are common

Aluminum CTE = 24 1/°C
Cured EPON 828 + CNTs
Glass CTE z 5 1/°C li
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OTHER EXPLORATIONS

In the future, would prefer no tracer materials.
Sylgard 184, for example, natively contains a peak
susceptible to stress.

See Ashley Maes' talk (Thurs) for discussion on
photovoltaic module encapsulants

Poly(ethylene-vinyl acetate) at 30°C
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CONCLUSIONS

For an encapsulation material within Sandia's mission space:

Rheo-Raman was used to calibrate a viscosity model vs cure temperature
Effects of dwell time on polymer viscosity, flow into mold

tot
' Cure stresses can be tracked during solidification

Optimization of cure schedule to reduce manufacturing stresses

Stresses tracked during thermal excursions for a cured sample
Observations of strains due to CTE mismatches
Detection of delamination/cracks TIme = 6 998

Time = 38.685 Time = 39 405

Ti e = 18.088

Time = 55.419 Ti e = 79.807


