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POLYMER ENCAPSULANTS HARDEN FRAGILE COMPONENTS FROM

CRADLE TO GRAVE
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POLYMER ENCAPSULANTS HARDEN FRAGILE COMPONENTS FROM
CRADLE TO GRAVE
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Encapsulation Cure Storage/Aging Transportation Environments
Bubbles, voids Cure + thermal Embrittlement Mechanical insult Swelling,
shrinkage Incompatibilities decomposition,

thermal expansion
Rheometer, FEM models
Computational models, Dynamic testing

DMA, Instron, computational models Fiber Bragg Gratings, Crack Imaging

*Currently, models of component performance in environments
do not take into account manufacturing stresses




RAMAN SPECTROSCOPY

Explore Raman spectroscopy as a cradle-to-grave diagnostic

Concentration

Inelastic scattering of light from molecular bonds

L =A (T, —To)*+S, 6+ v,

Wavenumber shifts due to strain and temperature are additive

Raman &hift[om '] Inelastic scattering from a molecular bond
Rheo-Raman tools can quantitatively monitor curing (photonics.com)

Bond identity
reactions simultaneously with rheology
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Detect manufacturing stresses using rheo-Raman
device. Calibrate strain/Raman relationships
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Calibrated strain/Raman relationships e

’ . . Raman spectra measured under tensile stress
quantify stresses in fielded components Jar polyettiylens (Tashivo.et al. T988)




SYSTEM OF INTEREST

/o\ <]3H3 ‘CleB /O\ EPON 828
CHz—CH-CHQ—O—@—%-@-(-OCHQ—?H—CHQ—O——([})n~O~CH2~CH~CH2 Diglycidyl ether bisphenol A
CH, OH CH, 76 wt
CH; CH, CH;

HzN—(!‘vHCHzO—('HzCIHO-)—xCHZCIH — NH, Jeffamine D-230 polyetheramine
24 wt%

Rheo-Raman systems are ideal environments for calibrating
Raman shifts with strain

Precise mechanical control up to 50 N stress (axial)

Thermal control up to 300 °C
Exact height measurements

Carbon nanotubes added as stress tracer materials
2 —10 nm diameter, 1 — 5 micron length, 0.01 wt%

Kotula 2016, Rev. Sci. Instruments

A custom interlocked box is placed around a
ThermoFisher coupled Rheo-Raman system




Viscosity (Pa*s)

VISCOSITY DEPENDENCE ON TEMPERATURE

Rheology measured at various temperatures:
Challenging due to fast cure times, axial stresses in rheometer
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Viscosity of liquid epoxy before cure depends on
temperature using an Arrhenius relationship.
Liquid viscosity is Newtonian.
Jeffamine lowers initial viscosity by almost an order of magnitude.
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EXTENT OF REACTION

Extent of reaction was previously measured as a
function of time and temperature using 3 isothermal
cures by differential scanning calorimeter (Adolf).

extent of reaction

heat of reaction = 450 J/Ig
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Legacy model: time (min)

dE 12.5kcal/mol

1
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Extent of reaction defined for Raman
spectra: ly,54 / 145, NOrmalized between 0-1

1186 cm!

Extent of Reaction

Legacy model is plotted
alongside Raman results.
Reasonable data agreement,
collected alongside rheology.
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VISCOSITY MODEL

Using legacy expression for the extent of reaction, a fit
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Raman Intensity

CARBON NANOTUBES AS STRESS MARKERS

Low concentration (0.01 wt%) carbon nanotubes
added to EPON 828

Several well-studied peaks are available for analysis
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D* peak stands apart from EPON 828 signal

G* and G: Tangential mode. Sensitive to semiconducting or metallic

CNT. Polarizable, sensitive to pressure

D: First order scattering sp? carbons, sensitive to laser energy
D* (or G’): Second overtone of D

Sensitive to temperature, pressure and mechanical deformation.
RBM: Radial breathing mode
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Peak Position {cm-1)

CALIBRATION: RAMAN SHIFTS OF CNT’S IN CURED EPON 828
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EPON 828 + 0.01% CNT is cured in a petri
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pressure at room temperature. | ‘EFON + ONTS
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CALIBRATION: RAMAN SHIFTS OF CNT’S IN CURED EPON 828
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STRESSES DURING CURE
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THERMAL EXPANSION OF A CONFINED SAMPLE
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OTHER EXPLORATIONS

. ..
. =~ » ¢ e ...
In the future, would prefer no tracer materials. £ N
Sylgard 184, for example, natively contains a peak flaie T o8
& 489
2

susceptible to stress.

-CH, y --0.3786x+190.33

4R8

0.2

0.4
Pressure {(MPa)

06 0.8

See Ashley Maes’ talk (Thurs) for discussion on
photovoltaic module encapsulants
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| CONCLUSIONS

For an encapsulation material within Sandia’s mission space: I

Rheo-Raman was used to calibrate a viscosity model vs cure temperature
Effects of dwell time on polymer viscosity, flow into mold

Cure stresses can be tracked during solidification
Optimization of cure schedule to reduce manufacturing stresses

Stresses tracked during thermal excursions for a cured sample

Jh%} N Observations of strains due to CTE mismatches
A" Sl Detection of delamination/cracks



