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Abstract

Currently, optical spectroscopy is used on the Z-machine to
characterize electrode surface conditions and plasma formation

during the Z power pulse. Such measurements are needed to
inform theory and simulation efforts to design next-generation

pulsed power machines. Several diagnostic techniques and resulting

measurements will be discussed, including surface electron

densities using Stark broadened line emission from passive
dopants, radiance estimates from absolutely calibrated streak

spectra, and low temperature (under 5000 K) measurements of

cathode surfaces using high gain calibrated avalanche photodiodes.
Additional capabilities using laser activated dopants that are
presently being developed to probe regions with lower electron

densities (less than 1017 cm-3) will also be described.

Experimental Overview

Z can deliver a 27 MA pulse within a 100 ns risetime. However, on

several loads loss currents exceed 1 MA.1 Measurements of the
electrode surface temperatures provide a direct comparison to
models to help benchmark and create more predictive codes.

An absolutely calibrated streak spectrometer is lens coupled to a
fiber optic cable which is used to image a 1-2 mm region on

electrode surfaces on Z. Parameters of the streak spectrometers
are:
• lm McPherson spectrometer

• 50 g/mm grating
• rd1.7 nm spectral resolution
• 200 ns-500 ns sweep window

Streaked spectra are corrected for (in addition to wavelength and
time):
• Geometric Distortions

• Wavelength dependent fiber transit time (dispersion)2

• Spectral radiance

Absolute Calibration

tro

• The systems have a "slow sweep" capability which allows for

sweep windows of several seconds.
• A tungsten lamp of known spectral radiance is coupled to an

integrating sphere and imaged over a sweep window of 8s.
• A laser driven light source (LDLS) is imaged on the slow and

200-500ns sweep speeds to correct non linearities between

sweep rates.
• In order to estimate errors a fiber of known geometrical

extent (Numerical aperture: 0.22, Diameter: 100 um) images a
several watt laser through a diffuser. Fstimated error is about
1 5%.

9

8

(;) 7

6
0
.(13 5
-0

4

13; 3
0_

2
400

Surface Measurements
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• Viewed upstream and downstream of

the load.
• Veasured asymmetries in the post hole

convolute
• Areasured the effect of a magnetic null

on plasma formation
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• Magnetic null likely causes
anode plasma formation on the
post when viewing upstream of

the load
• Fstimated electron densities by

3010ns upstream are mid
1017/cc-1018/cc, which occurs

3010 3020 3030 3040 3050 at 3035 ns on the downstream
lime(ns) post.

to little plasma formation on the
anode.

• Potentially a good region to
benchmark power flow codes.

• LiF dopant was used to estimate electron density from the Li I

transitions.
• Lines are fit with a high and low density component to account

for the highly broadened wings in the line profiles

• Stark widths3 and shifts suggest densities that range from 518/cc

from Ha to 4-617/cc from Li I. The range in density may be

attributed to density gradients along the light of sight, with a

high density, cooler surface.
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Avalanche Photodiodes

• Filtered and calibrated avalanche photodiodes (APDs) can be
used to estimate early time temperatures, prior to when streak

spectroscopy can be used.
• Temperature, assuming a black/graybody surface, can be

calculated using the APD spectral response, wavelength

dependent transmission, and the probe's geometric extent, from

the APD voltage.
• Solid stainless emissivity is used as the lower bound, and an

emissivity of 1 is used as the upper bound.

• Anode conditions can more easily be
deconvolved by viewing parallel to the anode.

• Here a comparison between two different
convolutes are shown.

k
The larger convolute prevents plasma
formation on the anode.
A line out at 3088 ns shows the large convolute
anode plasma is at an electron density of 317-
318/cc, which occurs by 3040 ns on the
standard convolute
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• Surface measurements result in stroll signals,  at high

densities which result in continuum andror Stark

dominated measurements.
• To measure lower density regimes, such as further into the
AK gap, a laser activated dopant can be used.
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Stainless Surface

• Results in densities less than 1017/cc
• Changes in the line shape during the power pulse on Z can

be attributed to MITL conditions
• Low density line shapes can be used to reliably diagnose

field strengths
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