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21 Outline

Introduction to glass and glass ceramic to metal seals

• Modeling needs

• Measurement of shear moduli

Construction of master curve and calculation of activation energy

Thermal dependence of microstructure

• Conclusions



1) I
What is a hermetic connector?

Barrier to gas/liquid transfer between
envlronments.
• Allow electrical transmission

Designed for extreme conditions
Thermal

o Pressure

o Shock/vibration

Many applications:
• Satellites, submarine vehicles, medical,
telecommunications, etc.

Types of hermetic connectors
o Matched seals

Compression seals

14111ror*4,c1,

Metal Housing

Amorphous or Ceramic
Glass Preform

Electrical Contact

1



Glass to Metal Seal designs have evolved over
the years

• increasingly complex geometries
• more pins & tighter spacing
• extended life-time requirements
• more complicated materials
(e.g., glass ceramics) 1

1



I And yet, despite years of experience ....
...We still are asking the same questions

How to design a robust seal?
• Will part remain hermetic?
• Meet life-time requirements?
• Re-use?

Why did the glass crack?
• still hermetic? remain so?
• foreign debris (glass chips)?
• pin stability — short circuits?
• accept or reject parts?



6  Why Glass-Ceramic to Metal seals?

Process/reflow like glasses

High temp stability after crystallization

Abnormal high T/P environment

High coefficient of thermal expansion
(CTE)

Most sealing glasses < 12 ppm/°C

Crystallization 4 tunable coefficient of
thermal expansion

Matched seals:

CTE Glass ceramic CTE housing

Composite microstructure 4
toughness/strength
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71 Sandia Patented Glass Ceramic

Oxide

Si02

B203

Li20

A1203

K20

74.3%

1.2%

12.7%

3.8%

2.9%

P205 3.1%

KnO 1.8%

1
J

Glass network former

Glass network modifier

Li3PO4 nuclei for crystallization

Corrosion resistance

Phase CTE (ppm/°C, 40-600°C)
Si02, glass 0.5
5107, Quartz 23.3
5102, Cristobalite 27.1
Li2SiO3
Li2Si205

13.0 (20-300°C)
11.0

More cristobalite

Higher CTE

Dai et al. (2016) J. Am Ceramic Soc



8
Sandia SL I 6 Glass-ceramics, process and microstructure

573°C

a-Quartz
trigonal
2.65 g/cin'

0-Quartz
hexagonal
2.53 g/cm3

870°C 1-170:C

0-Tridymite
hexagonal
2.25 a/cm3

As sealed thermal profile
Seal 8,
nu cite* Crystallize Cooldovm

1003 C —

•
803 C —

603 C —

ao0° C —

203° C —

20 min 40 nin 80nnir

Dai et al. (2016) J. Am Ceramic Soc

1705°C

0-Cristobalite
• cubic
2.20 a/cm'

Silica Melt

• cristoballite • glassy phase I. lithium metasilicate • Zn-rich • void space
Li,SiO,

Inho o ne s
Clusterin • of Cristobalit
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9 I Thermal Stress and Strain Prediction

Use Sierra codes to predict stresses and strains after seal processing
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I Anton Paar:CTD I 000 Rheology capability
Rectangular torsion geometry measures shear moduli
Fixtures are made of inconel and they are the only standard
ones rated to 1000°C
The stainless steel torsion fixtures are not rated above 600C due
to warping
The CTE mismatch doesn't seem to be causing a problem though
some slipping with low CTE glasses

Specifications: sample SRF
Width of sample

Thickness of sample
Length of sample

1 mm to 12 mm
1 mm to 12 mm
max. 40 mm



I Glass Moduli Temperature Dependence
11

CABAL 12 is a traditional sealing glass 20Mg0-20Ca0-20A1203-40B203

Silica free glass developed for lithium battery applications

Comparison of three manufacturer lots
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121 Glass-Ceramic Moduli Thermal Dependence

SL 17 composition is Li2O-Si02-A1203-K20-B203-P205-ZnO, Ceramed

Annealed 6 /16/16 — 5°C/min to 700, hold 30min, 1°C/min to RT

SL derived from step like change in thermal strain caused by cristobalite phase

change. 17 refers to CTE — 17 ppm/°C
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13 I Construction of a Master Curve
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141 Glass-Ceramic Thermal Dependence

SL16 was ceramed from the same parent crystallizable glass using a different

thermal processing, with less high expansion Cristobalite phase, and thus lower

CTE — 16 ppm/°C.
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151 Temperature Dependent

See strong dependence in glass transition during heating by vary cooling rate from
1°C/min to quenched ( decrease —400°C /10 min)
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16 I Dynamic restructuring in SL glass ceramics

Time temperature superposition shows evidence of dynamic restructuring of the glass-
ceramic well below the melting temperature

Time temperature superposition shows two distinct Arrhenius activation energies,

° Relaxation of residual glass (<600°C activation energy

- "Re-arrangement" of the crystalline phase, or "configurational" relaxation

Previous studies found the crystalline composition was stable up to 650°C
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171 Temperature Dependent Microstructure

Rearrangement is believed to be controlled by diffusion through viscous glassy phase

sio2CR

Li2SiO3
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18 XRD of Crystalline Phases

04-008-7641> Cristobalite - Si02
04-008-4821> Quarlz - Si02
04-007-2815> Lithiophosphate - Li3(PO4)
04-008-3005> Li2SiO3 - Lithium Silicate

10.0 04-009-8780> Li2Si205 - Lithium Silicon Oxide
04-015-9103> Quartz - Si02

8 0

4.0

2 0

S102 CR

uenched

Slow cooled

As-seald

Li2Si205

S102 QZ_H

J

t 

Si02 QZ_L

15 25
wo-Theta (deg)

30

(1) [SL16 as sealed.raw]
(2) [SL16 slow cool 2nd run.raw]
(3) [SL16 Quench 2nd run.raw]

35

As-sealed
Phase

Quartz Low SiO
Cristobalite SiO
Li SiO

Quenched

Complete transition

Li2SiO3+S.O2CIR 4Li2Si205

Partial transition

40 Si0201 Si020Ziow SiO2QZ_high

SL16
wt%
2.51
24.37
36.82
7.94
28.36

Slow cooled

hlSiO2CR SiO20Z_low + SiO2QZ_hig

Complete transition
Li2SiO3 sin+—•-2CR4Li2Si205

Cooling from 900 'DC, the crystalline phases of glass-ceramics changed from the original as-
sealed state

The phase conversion also depended on the cooling rate

Phase conversion likely dominated by bulk diffusion processes in a "viscous" glassy state above
glass transition temperature



19 I Thermal Strain Measurement
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Rheometers aren't designed to measure thermal expansion coefficients, but they
capture the qualitative trends and are able to access a wider range of temperatures

' Magnitude of thermal strain is wrong, perhaps due to inappropriate thermal gap correction
calibration.
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20 I Conclusions

Able to measure shear moduli of glass and glass ceramic sealing materials through
their glass transition temperature up to edge of melting transition (-60-950°C)

o Cristobalite alpha-beta phase transition

o Glass transition of material or glassy matrix

Time Temperature Superposition can generate a shear modulus master curve

More complex for glass-ceramics

• Slow-cooled: Acting like a glass with single Arrhenius activation energy related to the glass
relaxation

• Quenched: Two distinct Arrhenius activation energies,
O low temperature dynamics match the relaxation of slow cooled — due to melting of the glassy phase
O higher temperature dynamics related to the "re-arrangement" of the crystalline phase, or
"configurationaT relaxation
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