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.1 Outline

* Introduction to glass and glass ceramic to metal seals
* Modeling needs
°* Measurement of shear moduli

¢ Construction of master curve and calculation of activation energy

* Thermal dependence of microstructure

* Conclusions



What is a hermetic connector?

Barrier to gas/liquid transfer between
environments.

o Allow electrical transmission

Designed for extreme conditions
o Thermal
o Pressure

> Shock/vibration

Many applications: Metal Housing

o Satellites, submarine vehicles, medical,
telecommunications, etc.

Amorphous or Ceramic
Glass Preform

Types of hermetic connectors
> Matched seals

> Compression seals

Electrical Contact




Glass to Metal Seal designs have evolved over
.1 the years

x

increasingly complex geometries
more pins & tighter spacing
extended life-time requirements
more complicated materials
(e.g., glass ceramics)

XXX

i




.| And yet, despite years of experience ....
... We still are asking the same questions

How to design a robust seal?
* Will part remain hermetic?
* Meet life-time requirements?
* Re-use?

Why did the glass crack?
e still hermetic? remain so?
* foreign debris (glass chips)?
* pin stability — short circuits?
 accept or reject parts?




« I Why Glass-Ceramic to Metal seals?

dL/Lo*103

Process/reflow like glasses e e Onset: 903.4 °C(n.i)
High temp stability after crystallization i | |
o Abnormal high T/P environment

High coefficient of thermal expansion
(CTE)

o Most sealing glasses < 12 ppm/°C

Crystallization - tunable coefficient of
thermal expansion 5]

Matched seals:

Glass-ceramic

oz /
/

/

/

» i ¥

Thermal strain

|
) /GllaSS Peak: 813.4 °C, 11.9044E-03
Onset: 461.1°C /
[1] BPSsolid_amorphous.ngb-dle
——dL

5 . / 2] Elan46 SL16 HiT.ngb-dl
Peak: 509.0 °C, 6.4045E-03 23 S5 5115 T 0 S0

* CTE Glass ceramic < CTE housing 200C Te,;:s:r;t;etﬁre (C) 800C
Composite microstructure -
toughness/strength 5
Material C(-ZI(E) fggg’c?)
304L SS shell 18.89
Glass Ceramic* 16-17
Paliney7 pin 15.76

Housing

Conductor (Pin)



.1 Sandia Patented Glass Ceramic

Sio, 74.3%
B,O, 1.2% :I' Glass network former
Li,O 12.7%
Al,O, 3.8% } Glass network modifier
K,O 2.9%
P,05 3.1% — Li,PO, nuclei for crystallization
KnO 1.8% —» Corrosion resistance
Phase CTE (ppm/°C, 40-600°C)
Si0,, glass 0.5
S5i0,, Quartz 23.3 More cristobalite
Si0,, Cristobalite 27 .1 ‘
Li,Si0, 13.0 (20-300°C)

Dai et al. (2016) J. Am Ceramic Soc




Sandia SLI16 Glass-ceramics, process and microstructure (™)

8
DT3¢ 870°C 1470°C 1705°C
a-Quartz B-Quartz B-Tridymite B-Cristobalite
trigonal hexagonal hexagonal <« = > cubic -tf',nf'f > Silica Melt
2.65 g/em’ 2.53 g/em’ 2.25 glem’ 2.20 g/em’ .

As sealed thermal profile

Seal &
nucleate Crystallize Cooldown

1000° C—

. cristoballite . glassy phase . lithium metasilicate . Zn-rich . void space
Li,SiO

| |
| |
800" C— : : Inhomogeneous
| | Clustering of Cristobalite
. | |
600 C—
| |
- | |
200’ C— | |
| |
- | |
200’ C— I |
| |

20 min 40 min 60 min

Dai et al. (2016) J. Am Ceramic Soc




9‘ Thermal Stress and Strain Prediction

Use Sierra codes to predict stresses and strains after seal processing

B
) ,
| ¢
250 —— I ‘ T
__ 15000 c I ] : !
E 200 %mooo MEE?)%IZ%%&) : | —]
g ‘% . Glass Strength at22¢ | |/
g 150 :§ " //,7‘
3 100 E =000 //’Q\\ Zf:l%
E -10000// '
£ 5 PO 2 A W ot O R
S % 10000 T . 1[ .
0 .. GC) 5000 |- e ! ! { ‘ l ‘
= ] I
____.i_.b___‘____._ -
02) g -5000 | 4 + 4 | "
Current predictions are limited to extrapolation of 8 Lol |/ 7//a
materials properties from 600°C é g /\ 7 E |
£ ;
&) 20000 B g --00200 300400 :"5“50 60(
Temperature (°C) I

Dai et al. (2017) J. Am. Ceramic Soc.



Anton Paar:CTD 1000 Rheology capability

Rectangular torsion geometry measures shear moduli

Fixtures are made of inconel and they are the only standard
ones rated to 1000°C

The stainless steel torsion fixtures are not rated above 600C due
to warping

The CTE mismatch doesn’t seem to be causing a problem though
some slipping with low CTE glasses

Specifications: sample SRF

Width of sample 1 mm to 12 mm
Thickness of sample 1 mm to 12 mm
Length of sample max. 40 mm




‘ Glass Moduli Temperature Dependence

11

CABAL 12 is a traditional sealing glass 20MgO-20Ca0O-20A1,0,;-40B,0,
Silica free glass developed for lithium battery applications

Comparison of three manufacturer lots

100000 Melting

Elastic modulus temperature
P— ~650°C

10000

—SNL6 G’ —SNL6 G”
Vlox2G' —Viox2G"
1000 —Schott2G’ —>Schott2G"

Modulus (MPa)

Viscous modulus

400 450 500 550 600 650 700
Temperature ( C)

1 Hz, 0.001% strain



S
2 | Glass-Ceramic Moduli Thermal Dependence

SL 17 composition 1s Li,O-510,-Al,0,-K,0-B,05-P,0:-Zn0O, Ceramed
Annealed 6 /16/16 — 5°C/min to 700, hold 30min, 1°C/min to RT

SL derived from step like change in thermal strain caused by cristobalite phase
change. 17 refers to CTE ~ 17 ppm/°C

100
Elastic modulus
Ceramic melting
0 Glass transition Egg‘goecrat”re
~650°C
E ' . =+=Block 1 G’
] Cristobalite alpha-l3eta —a—Block 1 G"
--:5 1 1+ phase change ~200°C — Biodk B &
% ===Block 1B G"
. e==Block 2 G’
0.1 - Viscous modulus T i
0.01 . . . .
0 200 400 600 800
Temperature[C]

1 Hz, 0.001% strain



13‘ Construction of a Master Curve

10000

G" modulus (MPa)

—
o
o
o

0.01 0.1 1 10
frequency (Hz)

Frequency dependence of viscous modulus as a
function of temperature

Apply time temperature superposition to
develop a master curve and calculate Arrhenius
activation energy

10000

bT G" modulus (MPa)
S
o

100

—500
—525
—550
—575
—625
—f
“ 725
775
—3825
—3875

1E-10  0.0000001
aT frequency (Hz)

In(aT)

0.0001 0.1

5

n
12
0 .
. - 10
.
5 . » I
R
-10 s el(AT) 6 5
.
[ | ) mb T - 4
-15 .
L 4 -2
hllllll
-20 ad . . 0
0.0007 0.0009 0.0011  0.0013  0.0015

1/T [1/K]



14‘ Glass-Ceramic Thermal Dependence

SL16 was ceramed from the same parent crystallizable glass using a different
thermal processing, with less high expansion Cristobalite phase, and thus lower

CTE ~ 16 ppm/°C.

100000
Elastic modulus (solid)
10000
g Li,Si,05 melting
Z temperature
~ Two peaks
% 1000 B
= 600°C, 690°C R
@]
=
Viscous modulus (liquid
100 I
[
0 Cristobalite alpha-beta phase change ~200°C !
0 200 400 600 800 1000

Temp ( Q)

1 Hz, 0.001% strain



s | Temperature Dependent

See strong dependence in glass transition during heating by vary cooling rate from
1°C/min to quenched ( decrease ~400°C /10 min)

10000 :
Cooling
&
2
— 1000
>
=
3 —2C/min
% —3C/min
5 100 'f‘ )
§ * 10C/min
> —quench
—2as sealed
10 i
400 500 600 700 800 900

Temperature ( C)




16‘ Dynamic restructuring in SL glass ceramics

Time temperature superposition shows evidence of dynamic restructuring of the glass-
ceramic well below the melting temperature
Time temperature superposition shows two distinct Arrhenius activation energies,

> Relaxation of residual glass (<600°C activation energy

° “Re-arrangement” of the crystalline phase, or “configurational” relaxation

° Previous studies found the crystalline composition was stable up to 650°C

100000
| —— | 2 16
— —G" stepped \ - 0 | * L 14
s ) S -2 ¢ - 12
= — (' stepped
2" 10000 : “ ** 0’ - 10
% G'ramp »‘-‘,;_ -6 o %o 8
}E? —G" ramp £ -8 P &
10 L eln(AT) & ©
e 4 I
12 ‘ Wb T =
-14 - 2
y Koy = T ;
1000 0.0007 0.0009 0.0011 0.0013  0.0015

300 400 500 600 700 800 900 1/T [1/K]
Temp ( C)

Rodriguez et al. (2016) J. Am Ceram. Soc.



» | Temperature Dependent Microstructure

Rearrangement is believed to be controlled by ditfusion through viscous glassy phase

Li,Si0; >
10 EHT = 2000 kv WD = 9.8 mm Signal A =VP BSD1  Width =114.3 pm Oum EHT =20.00 kV WD =108 mm Signal A=VP BSD1 Width=114.3 um
100000
— —G" stepped -
[a
=, —G' stepped
§ 10000 | — ramp
=]
B —G" ramp
=
1000 o
300 500 700 900 b EHT =20.00 kV WD =11.0mm Signal A=VP BSD1  Width=114.3 um
Temp ( C)




Intensity(Counts)

10.0104-009-8780> Li2Si205 - Lithium Silicon Oxide

04015510- o502 Quartz Low SiO 2.51

Cristobalite SiO 24.37

. 36.82

$i0, CR . 7.94

J\J l/t 50, 7.1 28.36
B

60 Qm

40

18‘ XRD of Crystalline Phases

As-sealed

04-008-7641> Cristobalite - Si02 (1) [SL16 as sealed.raw]
04-008-4821> Quartz - Si02 Li,Si,05 (2) [SL16 slow cool 2nd run.raw] Phase

04-007-2815> Lithiophosphate - Li3(PO4) (3) [SL16 Quench 2nd run.raw]
04-008-3005> Li2Si03 - Lithium Silicate

/

‘ “ Quenched

sealed state

The phase conversion also depended on the cooling rate

SL16
wit%

!

Slow cooled

N Vi R — | Complete transition Complete transition
. Li,Si05+Si0,c, > Li,Si,0¢ Li,Si0,+Si0,c, > Li,Si,05
As-sealed H2310s _ N _ _ _
‘ | " | P.artlal trar.15|t|on | Si0,cz Si0,07 jow + Si0507 hig
s @ R e o Si0,c5 Si05q7 0w+ S10207_high
Cooling from 900 °C, the crystalline phases of glass-ceramics changed from the original as- I

Phase conversion likely dominated by bulk diffusion processes in a “viscous” glassy state above

glass transition temperature



19‘ Thermal Strain Measurement

Rheometers aren’t designed to measure thermal expansion coefficients, but they
capture the qualitative trends and are able to access a wider range of temperatures

> Magnitude of thermal strain is wrong, perhaps due to inappropriate thermal gap correction

Thermal Strain (AL/L, mm/mm)

calibration.
A 600 °C Set Point 0.06
R? data
0012 + 0.05
0.99
0010 | 098 0.04 Cristgpalite
097 transition
0.008 304LSS NL16 SL16 E
i © 0.03
0.006 - s s V) \
w—304L SS 0.02
sl ceeeSL16 GC —As sealed
0.002 - 0.01 l
: - - NL16 GC After 3C/min cool
0.000 v v . . v T 0 !
0 100 200 300 400 500 600 700 0 200 400 600 800 1 000

Temperature (°C)
Temperature (C)



20‘ Conclusions

Able to measure shear moduli of glass and glass ceramic sealing materials through
their glass transition temperature up to edge of melting transition (-60-950°C)

> Cristobalite alpha-beta phase transition

° Glass transition of material or glassy matrix
Time Temperature Superposition can generate a shear modulus master curve

More complex for glass-ceramics

> Slow-cooled: Acting like a glass with single Arrhenius activation energy related to the glass
relaxation

> Quenched: Two distinct Arrhenius activation energies,
° low temperature dynamics match the relaxation of slow cooled — due to melting of the glassy phase

° higher temperature dynamics related to the “re-arrangement” of the crystalline phase, or
“configurational” relaxation
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