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High-consequence controls: simple function, @
complex “always/never’ requirements

Verifying
. 5 simple, yet
m Our control systems are mostly low complexity, relatively easy to highe
analyze,like a dishwasher. consedugnce
controls
m But, they often have a large number of complex,
high-consequence safety, security, and reliability requirements. e

m Low complexity + high consequence + complex requirements =
ideal for a formal approach to design and/or verification.

@ high-conse quence
control

requirements
(number & complexity

function complexity — Armstrong et al.
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Research interests @

Verifying
i A . simple, yet
We are broadly interested in research areas related to refinement, high-
. consequence
action systems, and/or Statecharts: controls
m “Components”’, composition and connections to rely/guarantee
reasoning Introduction

m exploit abstraction/refinement for scalability of analysis

Liveness properties, hyper-properties

m Mathematical foundations (coalgebraic models, connections to
logic, category theory)

Practical issues, e.g., tractably managing large networks of
components and deep hierarchies.

Develop tools for verifying embedded hardware/software

m Like DeepSpec, our goal is One QED

Armstrong et al.
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Statecharts is an intuitive design language for

simple controllers @
Verifying
simple, yet
high-
* consequence
= controls
- ‘7 N

Statecharts

m Well-suited to our simple controller domain.

m State machine-based semantics, based, most broadly, on TLA —
simple, effective, and approachable for end-users.

m Semantics is easy to express within action systems: Event-B,
TLA+, etc.

m Control systems engineers have adopted tools with a similar Armstrong et al.
metaphor (e.g. Simulink/Stateflow', Scade'") 5/18



Statecharts can support an intuitive, @
refinement-based design pattern

Verifying
simple, yet
high-
consequence
controls

Chart-based constructions in our Statecharts are refinements in the
action system sense: SR
m Parallel and hierarchical composition

m Signal-based synchronization

Extended with a “math language,” our system also supports
GCL-style refinement (strengthening guards, weakening actions, etc.)

Armstrong et al.
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Statecharts provide “natural” mechanisms for
refinement

Hierarchical composition: An abstract parent state is refined by a set
of concrete child states and their transitions.

Figure: Abstract model Figure: Refined model

@
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Statecharts provide “natural” mechanisms for @
refinement

Verifying
simple, yet
. i ) high-
Guard Strengthening: Add guards to previoulsy defined abstract consequence

e s controls
transitions. New guards are based on new concrete variables.

Statecharts

Figure: Refined model with temperature

Figure: Abstract model A
conditions

Armstrong et al.
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Restrictions on the Statechart Semantics

Our version of Statecharts is restricted vis-a-vis Harel's original
paper, simplifying the formal semantics:

m Arrows can only go up or down one encapsulation level at a time
m Signals are scoped to the box in which they are created

m We call this variant: “Q Charts”

aaaaa
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Collaborators interested in refinement-friendly @
Statecharts:

. Verifyin
m Jet Propulsion Laboratory (US) sitole ek
high-
consequence
controls

m University of Southampton (UK)

—
Southampton Statecharts

m French Alternative Energies and Atomic Energy Commission
(France)

m Atomic Weapons Establishment (UK)

=L A~

E
W

Armstrong et al.

10/18




W3C SCXML Statechart Representation

I —
W3C text representation called SCXML has been modified to
accomodate refinement

m XML tools allow new meta-model namespaces to be introduced.
m Existing SCXML tools will ignore them

m Needed in order to support:
m Refinement levels (new attribute <iumlb:refinement >)

m Invariants (new element <iumlb:invariant >)

m Guards (new element <iumlb:guard >)

@
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C]_ tool maps Statecharts to many languages for @
further analysis by various formal tools

Verifying
simple, yet
high-
consequence
controls

q_ Compiler C compiler —» micro-controller
c

ACSL i Frama-C formal model checker

Executable Spec.

‘ Why3. Alt Ergo theorem prover/SMT solver

: —) | e | SCXML — sCXML =T :Cm: theorem prover/proof assistant Q Tool
Writte
Requirements Statechart-tool 0

NUSMV LTL/CTL formal model checker

VHDL Cadence commercial formal tools

(1_ Analog Analysis

T Ol+l\ev

Xyce Physics Sim

b

Wﬁ ominal or Nominal
=7 (Analog Model)

VHDL for forensic analysis

Armstrong et al.
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Understand out-of-nominal electrical behavior: @
Failure modes can be understood via abstractions

Verifying

m Examples of failures that result in an overapproximation: S'mhpi;}et

m A logic gate becomes unreliable and nondeterministic Sl

m A sensor fails, providing random input to a digital control

m Generally: any malfunction that generates additional

behaviors that were not part of the design intent

m Errors induced by environmental physics are common:

m Radiation (cosmic rays, etc.) pecldeneend,

Analysis

m Heating (fire, etc.)
m Physical insult (destruction of sensor, etc.)

m Abstraction techniques can reveal failure modes for which a
particular design will be robust

m Abstraction techniques can support designed-for failure modes
anticipating likely accidents and faults

Armstrong et al.

13/18



Square diagram shows refinement relationships that

preserve requirements

Out-Of-Nominal Nominal
Requirements Fa1_1—Safe Nominal

Requirements Requirements
Refinement Abstract Nominal

Failure Modes Refinement

/71

Failure Failure Failure
Mode 3 Mode 2 Mode 1

Figure from J. R. Mayo et al., Proc. 4th FTSCS Workshop, CCIS 596, doi:10.1007/978-3-319-29510-7_10. (© 2016 Springer.

m Refinement/abstraction conceptual diagram for treating

out-of-nominal and nominal models in a unified way

m Arrows point in the direction of abstraction

@
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Systems designed using formally-informed design @
appear more robust, even beyond what is proven

Verifying
simple, yet
high-

m The SMACCMPilot project (Hickey et al. 2014) developed ehseusrce
control software for a drone in the Ivory domain-specific contros
programming language (DSL)

m lvory constrains against some unexpected behavior by enforcing
basic memory safety properties

® The resulting drone software was dubbed “unhackable” after
extensive red-teaming

m The Compcert C compiler (Leroy 2009) was developed in the _
Coq theorem prover, tantamount to a restricted programming ComPley ane

language
m Extensive randomly generated tests (“fuzzing”) uncovered
hundreds of errors in mainstream C compilers but none in
Compcert’s core (Yang et al. 2011)

Armstrong et al.
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Outsize benefits of up-front formal modeling have @
been noted in practice

Verifying

simple, yet

m Key observation: design for analysis yields increased robustness, leﬁg;nce
regardless of when or even whether the analysis is performed controls

m Faults and vulnerabilities are reduced if the developer starts with
a high-level formal model — even if no further verification is done
and even if the implementation is not explicitly constrained
(Woodcock et al. 2009)

m This supports our hypothesis that robustness is conferred
because of design characteristics promoted by the formal

modeling process
Complexity and
Robustness

m By contrast, formal verification after the fact does not increase
robustness more broadly, if the design was not formally informed

m Example: the LLVM compiler infrastructure has undergone some
formal analysis, but fuzzing suggests it is no more robust than

other compilers
Armstrong et al.
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Conclusion: Broader principles support robustness
in digital systems informed by formal constraints

m Biological and social complex systems typically are not formally
verified, but show impressive robustness to unforeseen failures

m Why? They have inherent stability constraints from their origins
in adaptation and selection

m Our hypothesis: Digital designs constrained by formal
requirements also exhibit enhanced robustness to unforeseen
failures by a similar mechanism

@
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