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H igh-conseq u en ce controls: simple function,
complex "always/never" requirements

• Our control systems are mostly low complexity, relatively easy to
analyze,like a dishwasher.

• But, they often have a large number of complex,
high-consequence safety, security, and reliability requirements.

• Low complexity + high consequence + complex requirements =
ideal for a formal approach to design and/or verification.

• high-consenuence
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Research interests

We are broadly interested in research areas related to refinement,
action systems, and/or Statecharts:

• "Components", composition and connections to rely/guarantee
reasoning

• exploit abstraction/refinement for scalability of analysis

• Liveness properties, hyper-properties

• Mathematical foundations (coalgebraic models, connections to
logic, category theory)

• Practical issues, e.g., tractably managing large networks of
components and deep hierarchies.

• Develop tools for verifying embedded hardware/software

• Like DeepSpec, our goal is One QED
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Statecharts is an intuitive design language for
simple controllers

•

• Well-suited to our simple controller domain.

• State machine-based semantics, based, most broadly, on TLA —
simple, effective, and approachable for end-users.

• Semantics is easy to express within action systems: Event-B,
TLA+, etc.

• Control systems engineers have adopted tools with a similar

metaphor (e.g. Simulink/Stateflow
TM 

, Scade
TM 

)
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Statecharts can support an intuitive,
refinement-based design pattern

Chart-based constructions in our Statecharts are refinements in the
action system sense:

■ Parallel and hierarchical composition

■ Signal-based synchronization

Extended with a "math language," our system also supports
GCL-style refinement (strengthening guards, weakening actions, etc.)
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Statecharts provide "natural" mechanisms for
refinement

Hierarchical composition: An abstract parent state is refined by a set
of concrete child states and their transitions.

• •

Figure: Abstract model Figure: Refined model
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Statecharts provide "natural" mechanisms for
refinement

Guard Strengthening: Add guards to previoulsy defined abstract
transitions. New guards are based on new concrete variables.

Figure: Abstract model

•x

Figure: Refined model with temperature
conditions
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Restrictions on the Statechart Semantics

Our version of Statecharts is restricted vis--vis Harel's original
paper, simplifying the formal semantics:

■ Arrows can only go up or down one encapsulation level at a time

■ Signals are scoped to the box in which they are created

■ We call this variant: "Q Charts"

•

x.,
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Collaborators interested in refinement-friendly
Statecharts:

• Jet Propulsion Laboratory (US)

• University of Southampton (UK)

Soutliampton

• French Alternative Energies and Atomic Energy Commission
(France)

02.3

• Atomic Weapons Establishment (UK)
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W3C SCXML Statechart Representation

W3C text representation called SCXML has been modified to
accomodate refinement

• XML tools allow new meta-model namespaces to be introduced.

• Existing SCXML tools will ignore them

• Needed in order to support:

• Refinement levels (new attribute <iumlb:refinement >)

• Invariants (new element <iumlb:invariant >)

• Guards (new element <iumlb:guard >)
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9_ tool maps Statecharts to many languages for
further analysis by various formal tools
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Understand out-of-nominal electrical behavior:

Failure modes can be understood via abstractions

■ Examples of failures that result in an overapproximation:

■ A logic gate becomes unreliable and nondeterministic

■ A sensor fails, providing random input to a digital control

■ Generally: any malfunction that generates additional
behaviors that were not part of the design intent

■ Errors induced by environmental physics are common:

■ Radiation (cosmic rays, etc.)

■ Heating (fire, etc.)

■ Physical insult (destruction of sensor, etc.)

■ Abstraction techniques can reveal failure modes for which a
particular design will be robust

■ Abstraction techniques can support designed-for failure modes
anticipating likely accidents and faults
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Square diagram shows refinement relationships that
preserve requirements

Out-Of-Nominal Nominal

Requirements

Refinement

Fail—Safe
Requirements

Abstract
Failure Modes

/if t
Failure Failure Failure
Mode 3 Mode 2 Mode 1

Nominal
Requirements

Nominal
Refinement

Figure from J. R. Mayo et al., Proc. 4th FTSCS Workshop, CCIS 596, doi:10.1007/978 3 319 29510 7_1(1 © 2016 Springer.

• Refinement/abstraction conceptual diagram for treating
out-of-nominal and nominal models in a unified way

• Arrows point in the direction of abstraction
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Systems designed using formally-informed design

appear more robust, even beyond what is proven

■ The SMACCMPilot project (Hickey et al. 2014) developed
control software for a drone in the Ivory domain-specific
programming language (DSL)

■ Ivory constrains against some unexpected behavior by enforcing
basic memory safety properties

■ The resulting drone software was dubbed "unhackable" after
extensive red-teaming

■ The Compcert C compiler (Leroy 2009) was developed in the
Coq theorem prover, tantamount to a restricted programming
language

■ Extensive randomly generated tests ("fuzzine) uncovered
hundreds of errors in mainstream C compilers but none in
Compcert's core (Yang et al. 2011)
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Outsize benefits of up-front formal modeling have
been noted in practice

■ Key observation: design for analysis yields increased robustness,
regardless of when or even whether the analysis is performed

■ Faults and vulnerabilities are reduced if the developer starts with
a high-level formal model — even if no further verification is done
and even if the implementation is not explicitly constrained
(Woodcock et al. 2009)

■ This supports our hypothesis that robustness is conferred
because of design characteristics promoted by the formal
modeling process

■ By contrast, formal verification after the fact does not increase
robustness more broadly, if the design was not formally informed

■ Example: the LLVM compiler infrastructure has undergone some
formal analysis, but fuzzing suggests it is no more robust than
other compilers
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Conclusion: Broader principles support robustness
in digital systems informed by formal constraints

• Biological and social complex systems typically are not formally
verified, but show impressive robustness to unforeseen failures

• Why? They have inherent stability constraints from their origins
in adaptation and selection

• Our hypothesis: Digital designs constrained by formal
requirements also exhibit enhanced robustness to unforeseen
failures by a similar mechanism
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