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2 Overview

Introduction and overview of resonant plate testing

Current SRS method for defining resonant plate test specifications

Review of sample data from two shock laboratories

Proposed time domain method for defining resonant plate test specifications

Understanding time domain variations in the shock

Potential problems with time domain specifications

Review of some recent test results

Conclusions
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3 Introduction & Overview of Resonant Plate Testing

Resonant plate testing is commonly used to
simulate pyroshock events in the test lab

Unit under test is typically attached to the plate
front and the plate is excited by striking the rear
of the plate with a hammer or projectile

Excitation should be a two-sided oscillating
response similar to a decaying sinusoid
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4 Resonant Plate Test Specifications

io4

Resonant plate test specifications are typically -a
defined by a simple, three-point SRS and standard
tolerance bounds 1'103
• Knee frequency is the plate frequency

Low-frequency slope is typically 12 dB/octave 2

• High-frequency point is about a decade above the knee 102102

•

SRS Test Specification
— — — +/- 6dB Tolerance Bands

103 104
Natural Frequency (Hz)

In contrast, nearly every other shock test type is defined by physical parameters
• Velocity change and shock duration

• Peak acceleration and shock duration

• Hammer drop height

• Explosive charge stand-off distance

• Impact velocity or drop height

While almost all shocks are analyzed with SRS, very few are defined by SRS
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5 Motivation for the Change — Are These the Same?

Same SRS shock test specification
performed at two different laboratories

• Both laboratories are well respected and
competent

• Time history responses are drastically
different

Obvious difference in exposure

Both tests meet the SRS specification
within tolerance

• They are assumed to be equivalent

Laboratory Laboratory
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6 Motivation for the Change — Are They Really Equivalent?

Peak acceleration is comparable

. Peak strain should also be comparable

Rain-flow analysis used to estimate the
number of applied strain cycles

Significant difference in the number of
high-strain exposure cycles between the
two exposures

. Difference in fatigue damage

Acceleration Lab 1 Exposure

800g + About Equal

400g

200g

+30 cycles

+100 cycles

100g +420 cycles

50g +1600 cycles
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7  New Resonant Plate Test Specification Method

Would like to consider moving away from an SRS definition for resonant plate shock test
specifications to a time-domain test specification method

Many researchers have suggested adding temporal requirements to the SRS specification

O Usually temporal moments or shock pulse duration

Proposing to replace the SRS specification with a temporal-only test specification based
on three parameters:

O Resonant plate frequency

o Positive and negative peak accelerations

• Shock pulse duration

Undoubtably the SRS will continue to be calculated for comparison
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8 Frequency Tolerances

Resonant plate frequency is nominally defined by the physical
size of the plate and its material properties

-0.5

Actual response frequency is influenced by:

. Test fixture mass and stiffness

o Unit under test mass and stiffness

. Mass and stiffness of additional items added to the plate (damping bars, weights, etc.)

Unreasonable to ask shock lab to perform a modal test for every shock test executed

Need to allow reasonable latitude to accommodate test fixture installation

Can verify requirement post-test with Fourier transform
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9 Peak Acceleration Tolerances

Maximum peak amplitude within some defined tolerance range

, ±20% tolerance bands shown here

Return acceleration greater than some defined percentage of specification maximum

, > 50% of the specification shown here

Tolerance limits shown here suggestions to be investigated, not definitive limits
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10 Shock Pulse Duration Tolerances

Shock duration is surprisingly difficult to define

Analytical models are very clean since shock starts and ends at zero

• Measured test data is more complex since shock starts and ends in the noise floor

MIL-STD-810H is not exactly helping us out with this one

• The overall shock duration, Te, is the "duration from the time the signal rises above the noise
floor until the perceived termination of the shock."

• Difficult to write an algorithm against the user's perception

Temporal moments are affected by the signal length

• Additional noise floor data can significantly alter RMS duration calculation

• RMS duration requirement can always be satisfied
by changing the processed signal length

10% amplitude duration method

• Used for drop table shocks

o Unaffected by record length

o May be impacted by signal noise or
subsequent impacts
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11 Monte-Carlo Variations of the ideal Response

Need to understand how variations in the
time history impact the SRS

o Need to quantify time history variations with
likely SRS dB error

Monte-Carlo simulation of 1,000 decaying
sinusoids uniformly varying frequency,
amplitude, and decay rate

O ±10% on frequency

O +20% on amplitude

O +20% on damping ratio

All SRS results were generally within
±2 dB of the ideal response

Nominal shock duration was 7.3 msec

O 10% amplitude duration calculation

o Low of 5.7 msec

O High of 10.3 msec
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12 Increased Variations of the ideal Response

Monte-Carlo analysis repeated with
increased variation limits

. ±20% on frequency

. ±30% on amplitude

. ±50% on damping ratio

All SRS results were generally within
±4 dB of the ideal response

A —4 dB test would not be acceptable but it
helps to understand the problem bounds
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1 3 Allowable Response Variations

4
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-5

Monte-Carlo simulations help to quantify
range of acceptable responses

Amplitude variation is fairly linear with error

Frequency variation is less sensitive to error
although there is an apparent trend

Pulse duration does not indicate a very clear
trend although the extremes should be
avoided
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14 Recent Test Results

Recent test series performed at Sandia National Laboratories Mechanical Shock
Laboratory used time-domain shock specifications

Three test series performed on two different
resonant plates and one resonant fixture

Tolerances used for this test series were:

• ±30% on shock amplitude

• ±20% on frequency

o +50% on shock duration

• Acceleration data low-pass filtered at 100kHz

Calibrations shocks used to tune specifications

• First test series required 14 calibration shots

• Second test series required 9 calibration shots

• Final series required 4 calibration shots

• Calibration requirements similar to an SRS specification
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15 Potential Problems with New Method

Acceleration signal must be filtered to remove accelerometer resonance
O Typical undamped piezoresistive accelerometers have resonances >> 100 kHz

. Damped piezoresistive accelerometers have resonances around or slightly below 100 kHz

Need a consistent definition of faired peak amplitude that does not remove
acceleration content of concern

. Cannot change the filter frequency until you get the desired result

Secondary impacts or part damage will often present as a pulse duration failure
o Test may have been good but measure response fails duration check
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16 Conclusion

It is possible to specify a resonant plate test without an SRS

It is possible to control resonant plate shock pulse duration with appropriate
damping material on the plate

Calibration requirements for a time-domain specification are similar to those for an
SRS specification

More work is required to identify the best combination of test specification
parameters that will be widely accepted
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