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Abstract

In this paper we discuss recent advances in deep convolutional neural networks (CNN) for sequence learning,
which allow identifying long-range, multi-scale phenomena in long sequences, such as those found in fusion plasmas. We
point out several benefits of these deep CNN architectures, such as not requiring experts such as physicists to hand-craft
input data features, the ability to capture longer range dependencies compared to the more common sequence neural
networks (recurrent neural networks like long short-term memory (LSTM) networks), and the comparative computational
efficiency. We apply this neural network architecture to the popular problem of disruption prediction in fusion energy
tokamaks, utilizing raw data from a single diagnostic, the Electron Cyclotron Emission imaging (ECEi) diagnostic from
the DIII-D tokamak. Initial results trained on a large ECEi dataset show promise, achieving an Fj-score of ~91%
on individual time-slices using only the ECEi data. This indicates the ECEi diagnostic by itself can be sensitive to
a number of pre-disruption markers useful for predicting disruptions on timescales not only for mitigation but also
avoidance. Future opportunities for utilizing these deep CNN architectures with fusion data are outlined, including

impact of recent upgrades to the ECEi diagnostic.

1. Introduction

Plasma phenomena contain a wide range of temporal
and spatial scales, often exhibiting multi-scale character-
istics (see Figure . In fusion energy plasmas, many dis-
parate diagnostic instruments are simultaneously used in
order to capture these various spatiotemporal scales, and
to cover the multiple physics present in these plasmas. In
addition, fusion experiments are increasingly built to run
longer pulses, with a goal of eventually running a reactor
continuously. The confluence of these facts leads to large,
complex datasets with phenomena manifest over long se-
quences. A key challenge is enabling scientists/engineers
to utilize these long sequence datasets to, for example, au-
tomatically catalog events of interest or predict the onset
of phenomena.

Machine learning, and specifically the variant deep learn-
ing, has been proven to be highly successful in automat-
ing a number of tasks, such as identifying objects in im-
ages, language translation, and even the playing of strate-
gic games such as Go [1]. Many deep learning architec-
tures have been created and successfully applied to se-
quence learning [1l, [2] 3] problems, in areas of time-series
analysis or natural language processing. However, many of
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the typical architectures used for learning from sequences
(e.g. recurrent neural networks (RNN) and its most pop-
ular variant long short-term memory networks (LSTM))
suffer from memory loss; long-range dependencies in se-
quences are difficult for these architectures to track.

In this paper we discuss recent advances in neural net-
works, specifically an architecture that uses dilated con-
volutions in a deep convolutional neural network (CNN),
which was designed to overcome these problems of learn-
ing on long sequences. We use this architecture to predict
oncoming disruptions in fusion plasma discharges of the
DIII-D tokamak utilizing only raw data from a single, high
temporal resolution imaging diagnostic (the Electron Cy-
clotron Emission imaging diagnostic, or ECEi). Because
the ECEi diagnostic is sensitive to a range of multi-scale
dynamics in the plasma related to disruptions [4], it offers
the potential to more accurately predict them. Avoiding
disruptions is a grand challenge for tokamak fusion devices
on the road to fusion energy [5]. While much research has
gone into utilizing machine learning for disruption predic-
tion [6l [7, 8], often global, reduced 0-D features are used
in shallow machine learning methods. Recently, work uti-
lizing deep LSTM networks also added the use of low tem-
poral resolution 1-D plasma profiles [8], and another work
used a combination CNN/LSTM on resampled, low tem-
poral resolution bolometer data [9]. The work we present
here takes inspiration from these works in utilizing higher
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Figure 1: Example temporal and spatial scales of different broad
physics phenomena in fusion plasmas, based on Ref. [10]
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dimensional signals, and shows how to use newer deep
learning architectures to learn on high-temporal resolu-
tion data with long-range dependencies due to multi-scale
physics.

The outline for the rest of the paper is as follows: Sec-
tion [2| discusses a paradigm for understanding deep learn-
ing and its usefulness in fusion plasma physics, Section
discuss typical sequence learning architectures, and the
need for newer neural network architectures to capture
long-range dependencies in sequences, Section {4| applies
deep convolutional neural networks with dilated convolu-
tions to ECEi data for disruption prediction, and Section [f]
discusses future applications and directions for these net-
works in fusion.

2. A paradigm for deep learning

Deep learning has been tremendously successful in re-
cent years in achieving state-of-the-art results for many
machine learning tasks, including image classification, lan-
guage translation, and speech recognition. Reference [I]
provides a good review of the underlying principles of deep
learning. Deep learning refers to neural networks with
many hidden layers. Each hidden layer provides a linear
transform (with a number of weights, W}, along with a
bias term b,), followed by a non-linear transform (called
the activation). By stacking up several layers, a deep neu-
ral network can potentially learn complicated non-linear
functions. A task specific loss function is defined, and
produces a measure of the error between predictions of a
network, and the user-labelled targeted outcomes. Using
this measure of error from the loss function, neural net-
works use a method called backpropagation [11] to update
the weights of the neural network, with the goal of mak-
ing the predictions match the targets. In this sense, a
paradigm for deep learning is that deep neural networks
are a series of filters whose coefficients (or weights) are
“learned” instead of user-prescribed.

One of the reasons for deep learning’s great success is
the ability to learn multiple filters for high-dimensional
data, avoiding the need for humans to do feature extrac-
tion [1]. This allows the deep learning algorithms to learn
directly from raw data, for example using directly the pix-
els from a camera image to predict whether a cat is in the
picture, instead of having humans to specify filters which
can find features such as ovals (for eyes) and triangles (for
ears).
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Figure 2: Schematic example of a typical fusion plasma analysis
pipeline: raw data from the magnetics data is processed to extract
the plasma internal inductance. A number of transforms or “filters”
are applied to achieve this, including low-pass filter on the data,
solving a PDE set of equations (idealistically matrix inversion mul-
tiplying magnetics input), and finally normalizing and averaging on
surfaces of constant magnetic flux.

An example from fusion can aid in understanding how
feature extraction is applied everyday by fusion physicists,
and the potential for deep learning to learn the filters nec-
essary to perform tasks. In fusion plasmas, often a variety
of filters, transforms, and models are applied to measured
data to extract physically relevant quantities. Figure
shows the example of extracting the normalized internal
inductance, ¢;, from the raw magnetic diagnostic measure-
ments. A series of transforms are applied: low pass filter,
Grad-Shafranov equation using the EFIT code [12], and fi-
nally volume averages and normalizations to calculate the
normalized internal inductance. ¢; is often a parameter
passed into shallow machine learning architectures (e.g.
Random Forests[7], SVM]6], etc.) for use in disruption
prediction. Deep learning offers the potential to bypass
this process and allow the algorithm to learn filters for
identifying particular phenomena such as oncoming dis-
ruptions, neoclassical tearing modes, Alfven eigenmodes,
etc.

3. Sequence learning architectures

For learning on sequences, such as time series or sen-
tences in a document, several types of neural network ar-
chitectures can be used. In this section we point out dif-
ficulties with traditional architectures used for sequence
learning, and discuss how deep convolutional neural net-
works with dilated convolutions overcome these difficulties.

3.1. Traditional architectures

Traditionally, special neural network architectures called
Recurrent Neural Networks (RNN) have been employed
for sequence learning problems. These architectures have
feedback connections among layers, allowing the use of in-
formation from previous parts in the sequence [2]. For



years the dominant flavor of RNN has been the long short-
term memory (LSTM) network [13], which overcame diffi-
culties with training RNN’s on sequences with long-range
dependencies. LSTM’s use memory gates to enable them
to effectively remember important pieces of past sequences,
in theory making them able to remember dependencies in
infinitely long sequences.

However, in practice LSTM’s (and even more so RNN’s)
tend to suffer from memory loss, forgetting sequence events
that occurred much earlier [I4]. The length of sequence
that LSTM’s can remember will be highly dependent on
the dataset, but a general empirical observation is sequence
lengths in the thousands are the limit, i.e. a general rule
of thumb for LSTM’s to be useful is Tiong/Tshort S 1000
(where Tgport is a fast timescale of interest in a sequence,
and Tjong is a longer timescale that needs to be captured
for a particular prediction).

CNN’s have also been used for sequence learning [15]

16], though traditionally are not as common as RNN/LSTM.

One difficulty in using CNN’s for sequence learning is for
scenarios that need to respect causality (i.e. do not use
future time points to make predictions), to be sensitive to
long sequences you must increase the convolutional filter
size and/or the number of layers in the network, both of
which significantly increase the number of parameters for
the network to learn [17].

3.2. Deep convolutional neural networks with dilated con-
volutions

Recently there has been much research into deep learn-
ing architectures which can overcome the deficiencies of
RNN/LSTM’s, and handle long, multi-scale sequences. A
seminal paper presented one such architecture, WaveNET
[17], which is a convolutional neural network (CNN) fo-
cused on generating realistic audio. One of the key insights
of this paper was to use dilated convolutions to increase
the receptive field of the network (i.e. the number of se-
quence points used by a neural network to make a predic-
tion at a single time point). This overcomes the dilemma
faced with using normal convolutions in causal networks,
where to be sensitive to long sequences you must increase
the convolutional filter size and/or the number of layers in
the network. Dilated convolutions have a dilation factor
(d) which represents the number of input points skipped
between filter parameters, e.g. the sequence output y[n]
from a dilated convolution with dilation d is:

where w represents the weights of the 1D dilated convo-
lution filter of length k, and z[n] is the input sequence.
A normal convolution results by setting d = 1. By stack-
ing layers of dilated convolutions, and increasing the dila-
tion factor in each layer, the receptive field of the network
can be increased while maintaining a tractable number of
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Figure 3: Normal vs dilated convolutions. The CNN with dilated
convolutions has a much larger receptive field, with the same num-
ber of model parameters as the normal CNN. Figure modified from
WaveNET paper [17]

model parameters. The difference between normal and di-
lated convolution architectures is shown in Figure

Dilated convolutions impose an inductive bias or spe-
cific structure to the architecture which guide the trans-
formations learned by the neural network. Specifically, di-
lated convolutions have a natural connection with wavelet
structures, which have been used for separating out struc-
ture in multi-scale data, including turbulent flows [18]. In
a loose sense, these neural networks allow us to learn the
wavelet coefficients needed to accomplish our classification
task.

A simplified yet powerful architecture named temporal
convolutional network (TCN) [14] built upon this WaveNET
work, utilizing dilated convolutions and many modern neu-
ral network techniques, such as weight normalization (nor-
malizes layer weights to speed up training) and residual
connections (connections which skip layers, found to sta-
bilize deep neural networks). Bai et. al. [14] showed the
TCN could outperform LSTM and a similar architecture,
Gated Recurrent Unit (GRU)[19], on many common se-
quence learning tasks, especially for long sequences with
long-range dependencies. It is this TCN architecture that
we will now apply to the problem of disruption prediction
using ECEi data.

Before continuing, we mention that besides deep CNN’s
with dilated convolutions, there are other neural network
architectures being researched and developed to handle
long range dependencies, most focusing on Natural Lan-
guage Processing (NLP) applications. Many of these use
attention mechanisms, which learn which parts of sequences
are most important for certain predictions, to better fo-
cus the neural network on relevant parts of the sequence.
The most popular of these are transformer networks [20]
21), 22]. Non-local networks [23] also use a mechanism
similar to attention. In addition, there are CNN archi-
tectures which have been enhanced with attention mecha-
nisms [15]. While attention can be computationally expen-
sive, research is ongoing into making them more efficient
[24]. It is left for a future study to explore applying these
architectures to plasma time-series predictions.
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Figure 4: DIII-D ECEi diagnostic time-series data from each of the
160 channels of the LFS diagnostic, near a disruption event. The
sudden drop in ECEi signal a few milliseconds before the disruption
time (which is set at the current quench time) is due to the drop in
temperature at the thermal quench. Shot #154056.

4. Application to Disruption Prediction using Raw
ECEi Imaging Data

Disruptions in tokamak plasmas are a sudden loss of
control which cause a termination of the plasma and po-
tentially large destructive forces and/or heating on the
containment vessel and protective wall materials. Next-
step devices such as ITER and beyond will have a low
tolerance for disruptions [25]. We need to ensure disrup-
tions can be avoided by accurate prediction of oncoming
disruptions and mitigation techniques if necessary.

Here we apply the TCN architecture to high-temporal
resolution, raw ECEi imaging data from the DIII-D toka-
mak for the purpose of predicting oncoming disruption

4.1. DIII-D Electron Cyclotron Emission Imaging (ECE1)
diagnostic

The ECEi diagnostic [26] records RF emission inten-
sity at 16 tunable frequencies in the range of 2nd har-
monic electron gyromotion and along 20 lines of sight. An
example time series of the DIII-D ECEi data near a dis-
ruption is shown in Figure Under conditions that are
common in the core of many mid-sized tokamaks (optically
thick, Maxwellian plasma having modest gradients in pres-
sure and magnetic field, etc.) this signal is well-correlated
to a local electron temperature [28]. The diagnosti-
cian locates the spatial region of interest by tuning the
heterodyne receiver to a harmonic of the local cyclotron
frequency (w. = eB/m,.) and adjusting the quasi-optical
lenses that couple radiation to the two ECEi antenna ar-
rays. However, for the analysis presented in the next sec-
tions, none of the metadata describing those operations
is utilized; the neural net knows nothing of the instru-
ment’s design, operation, or potential correlation of the
signal with physical quantities. The filtering and inter-
pretation of raw ECEi data is spawned entirely from the
machine learning procedure.

There are a number of different root causes for dis-
ruptions, including edge radiation, too high density, and

2Code available at https://github.com/rmchurch/disruptcnn

MHD instabilities [29]. ECEi systems acquire data at such
a high sampling rate and spatial resolution under ideal
conditions that well-behaved signals span spatiotemporal
scales to reflect the dynamics of turbulent fluctuations,
Alfvén eigenmodes, tearing modes, sawteeth, ELMs, and
other potential pre-disruption markers. Non-ideal condi-
tions also impact the signal in ways that can be difficult
for a human diagnostician to interpret, but are rich in in-
formation. For example, a sudden loss of signal can be the
result of density cutoff. Alternatively, a sudden spike in
signal can be the result of a non-thermal electron distri-
bution. A wide range of other conditions can impact the
signal, producing fluctuations or other features that ma-
chine learning techniques might become sensitive to, even
when the human data analyst finds them to be trouble-
some or ambiguous. By using raw, un-processed ECEi
data, we make full use of all these signal features.

4.2. Data, Model, and Training Setup

A dataset of 2,747 DIII-D shots ( ~42% disruptive,
~58% non-disruptive, ranging from shot 144199 to 167542)
were selected from a shot database in the DISRUPTIONS
module [30] of the modeling framework OMFIT [31]. Of
the disruptive shots, about 45% were in the flattop phase of
the discharge (full plasma current disruption). Shots were
selected specifically where good ECEi data was available,
defined as shots where each ECEi channel has a signal-
to-noise ratio SNR > 3 (as a result, this excludes shots
where ECEi was in cutoff). Even though the spatial loca-
tion of the diagnostic can change between shots depend-
ing on plasma magnetic field and ECEi user settings, we
purposely made no effort to down select to only aligned
shots or do any kind of spatial interpolation. Instead, we
chose to rely on the neural network to learn pre-disruption
markers from a variety of locations. Time length of each
shot varies, typically between 5 to 10 seconds. The en-
tire dataset (approximately 10 TB) was transferred to the
Princeton Research Compute center, to enable use of the
Princeton Tiger GPU cluster, which has 320 Nvidia P100
GPU’s, with 4 GPU’s per node.

The ECEi data was taken in its raw, digitizer voltage
output, i.e. without calibration to the actual electron tem-
perature. The only corrections made were removing dig-
itizer offsets by subtracting the average value before the
shot begins (¢ < 0). As is common for neural networks[32],
the input ECEi data was then normalized before input
into the neural network, using the z-normalization. This
is done by creating a per-ECEi channel mean (z) and stan-
dard deviation (o) over the entire dataset, then normal-
izing the input as Z,orm = (€ — Z)/0,. Since T and o, are
constant over the dataset, it should still allow meaningful
correlations to be learned by the network, including rela-
tive changes in absolute temperature between channels.

For ease of training the neural network, we decided in
this initial paper to temporally downsample the ECEi data
to 100 kHz (i.e. factor of 10x less data). We also pass the
ECEi channels into the TCN without applying any initial
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2D convolutions in R, Z space. This means that the TCN
will learn the temporal correlations between channels, but
that we don’t explicitly tell the network about the spa-
tial relationship between channels (the spatial relationship
between channels is known implicitly by the network, by
passing the channels in the same order every time).

We treat the problem of disruption prediction as a
binary classification problem, where we predict whether
each time slice corresponds to a “non-disruptive” or “dis-
ruptive” class. Rea, et. al. [7] showed that data from
time slices in a disruptive shot but far from the disrup-
tion time, tg;srupt, had similar data distributions as time
slices from non-disruptive shots. Therefore, we label all
time slices within 300ms of a disruption as “disruptive”
(tdisrupt — t < 300ms), and all other time slices as “non-
disruptive” [7] (sequences from shots without disruptions
are taken during established times of the discharge, i.e.
during the plasma current flattop). Note that we could
have instead selected by hand a number of events impor-
tant for predicting disruptions (e.g. tearing modes, tem-
perature drop from radiation, etc.), and had the network
instead predict these events (i.e. multi-class classification),
which may have some advantages in identifying important
characteristics of disruptions. Choosing a binary target (is
this timeslice close to a disruption or not?) allows the net-
work to learn implicitly a variety of these events through
experience. Also note that we will aggregate timeslice pre-
diction into shot predictions, and there will relax the re-
quirement that only timeslices 300 ms before a disruption
are considered “disruptive”. The intuition here is that
we expect disruptive precursors to be present in a major-
ity of disruptive shots at least 300 ms before a disrup-
tion. Further work could shorten this time, attempting
to guarantee disruptive precursors during the “disruptive”
time slices, or lengthen this time, to better capture pre-
disruption markers that may occur much earlier.

Typical binary cross-entropy loss was used for the loss
function during the neural network training:

L= _%an [yn]ogyn—|—(1—yn)10g<1_gn)] (1)

where n is the number of timeslices in a batch, y,, is
the target (binary, i.e. discrete, either 0 or 1), g, the
network prediction (continuous, ranging from 0 to 1), and
wy, a constant class weight applied to help balance between
disruptive and non-disruptive timeslices.

We define our TCN model to have a receptive field of
Nyecept~30,000. This is an order of magnitude larger than
receptive fields in the original TCN [14] or WaveNET [17]
papers. With the 100 kHz sampling rate, this means that
each time slice prediction uses the previous ~ 300ms in
order to make the prediction. With our definition of dis-
ruptive time slices as within 300ms of the disruption, this
implicitly assumes that 600ms before a disruption is suffi-
cient to predict oncoming disruptions. We use a 4 hidden

layer TCN with dilations [1,10,100,961] (i.e. increasing
by a factor of about 10 each layer), with a filter kernel
size of 15. The number of filters per hidden layer was held
constant at 80 (varying number of filters per hidden layer
was not attempted).

The TCN architecture allows parallelization of the se-
quence prediction by inputting sequences of length Nq,
which are longer than Nyecept, resulting in Nyeq — Nrecept +
1 predictions per sequence. We are limited in the length
possible due to memory constraints of the GPU, and the
need to process a number of sequences from a variety
of shots for best learning (the group of sequences pro-
cessed for a single update of network weights is called a
“batch”). Empirically it was found that sequence lengths
of Ngeq = 78,125 allowed model computations that fit in-
side the GPU memory constraints, while allowing a batch
size of Npgiren = 12 (per GPU) to ensure sufficient variety
within each batch for training with stochastic gradient de-
scent (i.e. each GPU processes Npgtch X (Nseqg — Nrecept + 1)
number of sequences for each weight update).

Multi-node, multi-GPU setup was used to parallelize
the training. The Pytorch built-in synchronous data par-
allel training routine DistributedDataParallel was used
[33], training on 16 GPUs over 2 days. This makes the to-
tal effective batch size with data parallelism Nyqicn - Ngpu =
192. Larger batch size can be achieved reducing the se-
quence length, though at an increased computational cost
due to more data reads.

Stochastic Gradient Descent (SGD) with Nesterov mo-
mentum 0.9 was used to train the model, with an initial
learning rate of 0.5 that was decreased automatically upon
plateau of the loss (ReduceLROnPlateau). A warmup pe-
riod was used for the first 5 epochs (1 epoch is a single
pass through the complete training dataset), increasing
the learning rate from 0.0625 to 0.5 to enable larger batch
training [34].

The set of sequences with timeslices consisting of only
the majority class (“non-disruptive”) was undersampled
such that there were balanced disruptive and non-disruptive
sequences|35], leading to a total data size of ~66 GB for
training. 10% of the data was set apart as a hold-out
validation set to determine during training how well the
neural network was generalizing. Caution was taken to
ensure that the training and validation datasets had no
shots in common. Two validation metrics were tracked:
accuracy (how many time slices were predicted correctly
as disruptive or non-disruptive), and F1-score (a harmonic
mean between precision and recall). Because the time slice
classes are imbalanced (even though the sequence sets are
balanced), the Fl-score gives a better indication of how
well our classifier does on the minority class (disruptive),
as can be seen with its equation:

2 2

Fy = 1 1~ TPiFP 4 TP{FN
TP

Precision + Recall TP

where T stands for true (correctly predicted), F for false
(incorrectly predicted), P for positive (disruptive), and N



for negative (non-disruptive). Since the output of the TCN
network ¥, is continuous, we need to determine a threshold
to map the continuous output to a discrete prediction. We
use the common technique of calculating the accuracy and
F1l-score using a range of thresholds (for our case from 0.05
to 0.95 in 0.05 increments), then select the threshold that
maximizes the F1l-score.

4.3. Results

The results of training this TCN model on ECEi data
for disruption prediction on DIII-D are shown in Figure
Results are plotted over 1000 training epochs. The train-
ing binary cross-entropy loss continually decreases over the
training, showing our model has the capacity to learn the
task from this dataset. The validation loss also continually
decreases, slightly flattening towards the end, indicating
the model is reaching the limit of its generalizability after
1000 epochs. The two validation metrics are also shown in
Figure |5, the metric of accuracy reaches ~94%, but more
importantly the metric of F1-score reaches ~91%, showing
the neural network has learned to predict individual time
slices of both disruptive and non-disruptive time slices very
well.

We use a hysteresis threshold method[36] to consoli-
date the time slice predictions to shot predictions. This
method triggers a disruptive alarm if the neural network
output rises above a high threshold, o5, and afterwards
stays higher than a lower threshold o4, for a time win-
dow Tgiarm. In this manner it avoids spurious spikes in
the predictions. A Bayesian optimization scheme using the
optuna package[37] was used to find the optimal thresholds
and time window parameters to produce the highest per-
formance. Unlike for the time-slice prediction, we do not
only consider 300 ms before the disruption as “disruptive”,
but rather accept alarm triggers anytime during the shots
(i.e. we allow an arbitrary class parameter from Ref. [36],
Telass — 00), up to 30 ms before the disruption (a common
quoted minimum time needed for disruption mitigation).
This means that alarms anytime during a disruption shot
will be considered a success (true-positive). The Bayesian
optimization routine was set to minimize the distance to
a perfect true-positive rate TPR = TP/(TP + FN) =1
and false-postive rate FPR = FP/(FP +TN) = 0, i.e.
the optimization objective was:

Xy = arg)r(nin \/[TPR(y;x) —1)* + [FPR(y;x) — 0]* (2)

where X, = (Clow; Ohigh, Talarm) 1S the optimal set of
parameters, and y the neural network predictions. This

produced parameters opign = 0.96, 0100 = 0.96, and To1arm =

lms, with an shot Fl-score of 0.944. A full grid search
of the parameters was done to verify, and the resulting
receiver-operator curve showing FPR versus TPR for each
parameter combination on the validation dataset is shown
in Figure [6] along with the convex hull showing the best
points. Using the convex hull, this gives an AUC of 0.963.
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Figure 5: Results from training the TCN on ECEi data. The top
plot shows the binary cross-entropy loss, both for the training dataset
(the data used to train the model) and the validation set (used to
monitor how the network generalizes on unseen data). The loss con-
tinually decreases as the neural network learns from the data over
each training pass (“epoch”). The accuracy and Fl-score are shown
in the bottom plot. These metrics are for timeslice predictions.
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Figure 6: Receiver-operator curve for the validation set. Blue dots
are for varying alarm parameters, and the orange points the convex
hull of this set.
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<

Table 1: Confusion matrix for the shot predictions on the holdout
test set.

These optimal parameters were then used with the
holdout test dataset predictions, in order to test how this
predictor and set of alarm parameters would perform in
the future. This produced a shot F1l-score of 0.868, with
the number of shots correctly and incorrectly predicted
(i.e. confusion matrix) shown in Table As seen the
true positive rate is encouraging, at ~94.9%, however the
false positive rate is too high, at ~17.8%. We hypothesize
the high false positive rate is due to the undersampling
of non-disruptive shots, and that with further training,
and instead oversampling this could be improved. Current
machine learning disruption predictors typically achieve a
true-positive rate in the low 90% on shots [6l [7] 18, [9], but
with more reasonable false-positive rates (< 10%). The
rough goal is a true-positive rate of >95% with a false-
positive rate of <5%|25]. The results presented here show
further work needs to be done with this machine learning
technique, but, considering this utilizes a single diagnos-
tic, shows promise in being able to contribute to a machine
learning disruption prediction solution.

The warning times given by these disruption predic-
tions are significantly before the minimum time needed
for disruption mitigation (30 ms), as shown in Figure
The majority arrive at least 200 ms before the disruption,
giving sufficient warning time to in principle use control
algorithms for disruption avoidance[30]. As seen, approxi-
mately 15% of the detected disruptions were detected more
than 1 second before the disruption, though more detailed
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Figure 7: Warning time (i.e. time before a disruption when the
trained predictor raises the alarm) for the detected disruptions. All
disruptions are detected at least 500 ms before the disruption occurs.

analysis is needed to determine whether these were based
on true disruption precursors, or should be counted as
false-positives.

Examining the output of the TCN disruption predictor
can give insight into what the neural network has learned
from the ECEi data. We first show in Figure[8|an example
shot with a flattop disruption, which the TCN predictor
correctly identified roughly 260 ms before the disruption.
Significant n = 1 mode activity is present, and appears
to lock near 3.0 seconds. The plasma survives another
500 ms, with the TCN disruption predictor alarm raised
220 ms after the mode locks (within the receptive field of
the TCN). Notice also, though, that the TCN disruption
predictor has high output during sudden drops in electron
temperature near 2.0 seconds, though never sustained over
1 ms to raise the alarm.

There is ongoing work identifying the failure mecha-
nisms of the TCN disruption predictor, particularly the
false-positives (i.e. alarm raised during non-disruptive shots).
Figure [9] shows such a shot, where the TCN disruption
predictor appears very certain a disruption is imminent.
Examining the plasma time traces, this shot appears to
have a minor disruption[38], where there is a strong drop
in core electron temperature at 2.0 seconds, but the plasma
recovers. There is MHD activity leading up to and during
the drop, as seen in Figure [9] The TCN disruption pre-
dictor appears to trigger during the locking of the n = 2
mode, but closer analysis of magnetics also shows a m/n =
2/1 mode present just previous to when the TCN disrup-
tion predictor triggers. Further techniques to identify the
salient features that cause the neural network to trigger
will be discussed in the following section. As the sawtooth
amplitude and period are often modified near disruptions
(as in Figure 7 due to MHD mode coupling, the fact
that the sawteeth do not substantially change could have
been an indicator that this shot would not completely dis-
rupt (though there is some evidence of sawteeth modifi-
cation near minor disruptions also)[39]. The ECEi diag-
nostic does capture sawteeth behavior, nevertheless, this
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Figure 8: Time traces of plasma quantities (plasma current, I;,, an
ECE core channel, magnetics measurements of the n = 1 mode am-
plitude and frequency) and the output of the TCN disruption predic-
tor during a disruptive shot, correctly identified. Red dashed lines
marks the predictor alarm time, roughly 260 ms before the disruption
occurs. Shot 145018.

does suggest that additional diagnostics, or more reduced
physics-based extracted features could augment the ECEi
raw data in this disruption predictor, along with further
training looking at more shots. This point will be further
discussed in the next section.

5. Discussion and Future Work

These results show the usefulness of deep convolutional
neural networks with dilated convolutions for fusion prob-
lems where the multi-scale, multi-physics nature mandates
capturing long-range dependencies in time-series. The re-
sults also demonstrate that the ECEi diagnostic captures
rich pre-disruption dynamics sufficient enough to by itself
be useful for disruption predictions. The techniques ap-
plied here show deep learning can apply directly to raw
data from diagnostics with high temporal resolution in or-
der to make useful disruption predictions, a topic critical
to the success of magnetic confinement fusion. These tech-
niques can also be applied to various time-series sequence
analysis problems, many which apply to data gathered
by scientific instruments. They also show that training
TCN networks with large receptive fields on the order of
~30k is possible, allowing learning on long sequences with
long-range dependencies. This initial paper presented the
proof-of-principle of the technique. Comparisons using
other machine learning techniques are needed to defini-
tively show the benefit of these TCN architectures for
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Figure 9: Time traces of plasma quantities (plasma current, I, an
ECE core channel, magnetics measurements of the n = 1 mode am-
plitude and frequency) and the output of the TCN disruption predic-
tor during a non-disruptive shot, incorrectly identified. This plasma
appears to self-heal after a minor disruption. Red dashed lines marks
the predictor alarm time. Shot 149485.



this particular application of disruption prediction, and
the sole use of ECEi.

Looking forward to disruption prediction on machines
such as ITER and beyond to fusion reactors, this work
can help inform how to best utilize the diagnostic sets for
data-driven disruption predictions, and what diagnostic
coverage would be needed for accurate predictions. The
results presented here motivate the installation and use of
high-resolution spatiotemporal diagnostics such as ECEi
in future fusion reactors, which are feasible to install but
may be in different forms compared to diagnostics in cur-
rent devices [40]. The TCN algorithm is quite general and
can be applied to other diagnostics and/or physics-based
features, expanding the temporal information used in dis-
ruption prediction. As diagnostic coverage in expected to
be reduced in fusion reactors due a number of nuclear envi-
ronment issues, this work could be expanded to help make
the most of available diagnostics, and inform a minimal
set of diagnostics needed for accurate disruption predic-
tion. Additional lines of research related to utilization of
the work presented here in future devices such as ITER
are detailed below.

For future work, there are many areas which can extend
and enhance the work presented here.

First, pertaining to using deep learning with the ECEi
diagnostic for disruption prediction, there is a large po-
tential to further increase the disruption prediction perfor-
mance. Using the full dataset (no temporal downsampling,
no undersampling of non-disruptive sequences) could fur-
ther improve the results shown here. With the current
computational setup, this may require a hybrid model/data
parallelism in the parallelization of the training routine,
where the model will be decomposed to on-node GPU’s,
and data parallelism will be used across nodes [41]. Vary-
ing model parameters such as the dilation factor may also
be a viable solution. Also, although the TCN architectures
allow training on raw data, it may be that certain pre-
training transforms (e.g. short-time Fourier transforms)
may be sufficient for the task at hand and can simplify
the neural network architecture needed (this would be an
example of human crafted features, see Section .

Second, combining multiple diagnostics (in machine
learning parlance often referred to as multiple modalities)
will most likely be mandatory for multi-physics problems
such as disruption predictions. Disruptions have a num-
ber of different physics root causes, which may be more
accurately predicted using diagnostics more sensitive to
those physics, for example a bolometry diagnostic for im-
purity radiation induced disruptions. Separate neural net-
works could be trained on each diagnostic and combined
at the end to give a prediction, but newer techniques such
as feature-wise transformations offer the potential to in-
tegrate multiple diagnostics into a single network[42], al-
lowing correlations between diagnostics to be utilized in
the disruption prediction. We can also explore inputting
into the neural network more physics-based features, ex-
tracted from the raw diagnostic signals, like those that

have been traditionally used in disruption prediction such
as the n = 1 mode amplitude and frequency. Care must
always be taken when using processed signals that causal-
ity is not violated by filters or transforms used to extract
the features.

Third, understanding how to transfer these trained mod-
els to newer machines such as ITER is critical, where not
many disruptions can be tolerated [25]. Purely data-driven
techniques utilizing the trained neural networks can be
used, namely a technique known as transfer learning which
enables learning on a small number of examples by re-
training a neural network that has already been trained
on a different, larger dataset from similar but not neces-
sarily completely overlapping data distributions [43] [44].
For similar diagnostics, it may be possible to apply trans-
fer learning for use on different machines, which can be
tested now, for example by attempting to retrain the dis-
ruption predictor in this paper using the ECEi diagnostic
on the KSTAR tokamak [45]. However, there are difficul-
ties with this purely data-driven approach, as mismatches
between spatial sizes, temporal sampling rates, and device
physical timescales may make scaling or interpolation of
data between devices impossible. Techniques which can be
viewed as more hybrid, including physics information with
the data-driven approach, may be necessary. One possi-
bility for including physics constraints can come from in-
cluding simulation data in retraining models, making use
of synthetic diagnostics for the new machine [46]. An-
other possibility is to create models for plasma behavior,
including disruption, and extract model parameters from
existing machines and their diagnostics[47].

Fourth, interpretability of the neural network predic-
tions is greatly desired. While these algorithms can be
treated as black-boxes for certain engineering uses (one
example may be disruption prediction for triggering miti-
gation), when extrapolating to new machines, understand-
ing why the algorithm is giving a particular prediction
is very beneficial. There is various research into neural
network interpretability [48], including saliency methods
which have been applied to, for example, neural networks
on self-driving cars, to identify which pixels of an image
most informed the neural network in the prediction on di-
rection to go [49]. Caution must be used to ensure the
inductive bias (i.e. selected structure) of the networks do
not dominate the outputs of these methods [50]. Recent
work using context activation vectors [51], a small set of
samples with a domain-expert determined salient feature,
have been used to identify when a neural network utilizes
such features for a particular prediction. This could allow
fusion physicists to isolate pre-disruption markers of inter-
est (e.g. locked modes), and allow the neural network to
output how important these markers were in its disruption
prediction.

Fifth, recent upgrades to the DIII-D ECEi system give
more accurate absolute electron temperature measurements,
providing sharper details of modes in the plasma. System-
on-chip (SoC) technology[52] [53] provides super electronics



noise suppression and outstanding shielding performance
against out-of-band interference. Also, the working fre-
quency has been upgraded into W-band (75-110 GHz),
which is able to set the ECEI observation window on phys-
ically interesting regions of the pedestal or core. The new
W-band SoC ECEI system has been calibrated with stan-
dard Electron Cyclotron Emission Radiometer and Thom-
son Scattering to provide real-time electron absolute tem-
perature profiles. These upgrades give the promise of al-
lowing neural networks to even more accurately capture
and learn the pre-disruption dynamics.

Finally, this technique can of course be used to detect

various fusion plasma phenomena, besides disruptions, which

are of interest to operators and physicists. Especially
in high temporal resolution diagnostics, the data is of-
ten cumbersome to manually review. Creating an “auto-
mated loghbook” using a neural network trained to identify
phenomena of interest could create tremendous value in
helping physicists sift through the data intelligently. For
situations where labelling the data may be cumbersome,
self-supervised techniques can be used [54], where the net-
work trains on a large diagnostic dataset, and attempts to
predict next time points for the diagnostic. This trained
model can then be retrained on a small labelled dataset
of a particular phenomena in order to accurately identify
other instances of the phenomena.
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