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Motivation

PZT95/5 can transform at room temperature from a ferroelectric rhombohedral

(FER) to an antiferroelectric orthorhombic (AFO) state under pressure because it
has a smaller unit volume. Poled PZT is depolarized by the ferroelectric to
antiferroelectric phase transformation triggering a release of bound charge, which

makes this material interesting for pulse power applications. The ferroelectric-

antiferroelectric phase transformation is highly nonlinear, hysteretic, and operates
in a stress and electric field domains that also experiences other nonlinear

phenomena such as domain-reorientation. This poses a substantial challenge for

macroscale continuum models because these inherently microstructural changes

are not resolved. A ferroelectric material model has been developed to simulate

phase transition and domain reorientation for PZT95/5. A micromechanical

approach approximates the domain microstructure with volume fractions
representing all possible domain orientations. Energy-based switching criteria are

used to capture the phase transformation and domain reorientation. The validated
model successfully explains the combined domain reorientation and ferroelectric-
antiferroelectric phase transformation observed in PZT95/5 under triaxial

compressive loading.

Material and Model Behavior

Within each single crystallite grain, the material model defines each of the 8 unique

FER domain states and 3 unique AFO domain states as individual variants each

defined by a spontaneous strain. Energy-based switching criterion governing

transformation between two variants is satisfied when the availability of the system

to do positive work from the spontaneous strain change of the transformation

exceeds the transformation energy barrier.
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Under hydrostatic compression, FER variants are equally likely to transform to all

three AFO variants leading to isotropic remnant strain in the AFO phase. When

deviatoric stresses are present, FER variants will only transform to the most

energetically favorable AFO variant (mechanically compatible with the stress state).

This causes anisotropy in the AFO remnant strain. Sufficiently large deviatoric
stresses could also trigger a ferroelastic domain-reorientation in the FER phase

prior to phase transformation.
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Experimental Material Response

The modeling effort aims to reproduce and validate the experimental characterization work conducted by Zeuch

et al.*, which triaxially loaded unpoled PZT95/5 specimens under a combination of constant uniaxial and ramped
hydrostatic compressive stress. This creates a constant stress difference (CSD) between the axial and transverse

stresses. Zeuch's study found remnant axial and transverse strains of phase transformation to be isotropic under

hydrostatic loads and severely anisotropic under CSD conditions while remnant volumetric strains of

transformations were unchanged. Increasing CSD was also shown to decrease the phase transformation
initialization pressure and increase the completion pressure.
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• D. H. Zeuch, S. T. Montgomery, and J. D. Keck, "Hydrostatic and Triaxial Compression Experiments on Unpolled Pzt 95/5-2nb Ceramic - the Effects of

Shear-Stress on the Frl-Ao Polymorphic Phase-Transformation," (in English), Journal of Materials Research, vol. 7, no. 12, pp. 3314-3332, Dec 1992.
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Predicted Phase Map of FER-AFO Phase
Transformation in Hydrostatic-Uniaxial Stress Space
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The modeling approach is capable of closely

capturing the triaxial loading response of

PZT95/5 including the FER and AFO elastic
response, the transformation strain under both

hydrostatic and triaxial loading, the initiation and
termination stress states for phase transformation,

and the initiation stress for domain reorientation.

For pulse power applications loaded under a

mixture of hydrostatic and deviatoric stress, the

model is capable of predicting a phase diagram in

hydrostatic-deviatoric stress space outlining

conditions for full, partial, and no phase
transformation.
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