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Motivation Experimental Material Response

PZT95/5 can transform at room temperature from a ferroelectric thombohedral The modeling effort aims to reproduce and validate the experimental characterization work conducted by Zeuch
(FER) to an antiferroelectric orthorhombic (AFO) state under pressure because it et al.*, which triaxially loaded unpoled PZT95/5 specimens under a combination of constant uniaxial and ramped
has a smaller unit volume. Poled PZT is depolarized by the ferroclectric to hydrostatic compressive stress. This creates a constant stress difference (CSD) between the axial and transverse
antiferroelectric phase transformation triggering a release of bound charge, which stresses. Zeuch’s study found remnant axial and transverse strains of phase transformation to be isotropic under
makes this material interesting for pulse power applications. The ferroelectric- hydrostatic loads and severely anisotropic under CSD conditions while remnant volumetric strains of
antiferroclectric phase transformation is highly nonlinear, hysteretic, and operates transformations were unchanged. Increasing CSD was also shown to decrease the phase transtformation
in a stress and electric field domains that also experiences other nonlinear initialization pressure and increase the completion pressure.

phenomena such as domain-reorientation. This poses a substantial challenge for
macroscale continuum models because these inherently microstructural changes
are not resolved. A ferroelectric material model has been developed to simulate
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used to capture the phase transformation and domain reorientation. The validated
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model successfully explains the combined domain reorientation and ferroelectric-
antiferroelectric phase transformation observed in PZT95/5 under triaxial
compressive loading.
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transformation between two variants 1s satisfied when the availability of the system
to do positive work from the spontaneous strain change of the transtformation

exceeds the transformation energy barrier. Mo d e ‘ N g Res ponse
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three AFO variants leading to isotropic remnant strain in the AFO phase. When 400 B R | ,/
deviatoric stresses are present, FER variants will only transform to the most
energetically favorable AFO variant (mechanically compatible with the stress state). 6‘1 CSD oMPa ||
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stresses could also trigger a ferroelastic domain-reorientation in the FER phase
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The modeling approach 1s capable of closely

capturing the triaxial loading response of
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