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Effect of TDS on He-induced W nanostructure



3 | Helium-induced “fuzz” on W surfaces
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Fuzz growth in divertor-relevant conditions:
« material degradation

« core contamination (high Z)

e tritiated W dust
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M.J. Baldwin and R.P. Doerner, Nucl. Fusion (2008).



4 I He-induced nanostructure growth on W surfaces
(b) He" flux

« physics for fuzz growth still not well understood

fo W
original surface
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* general st

. He implanted into W
. forms stable pairs of He
coalesce into He bubbles

4. He bubbles + surx:\e stresses + W adatom

diffusion = nanostkucture

thermal desorption spectroscopy (TDS) can

Dasgupta et al., Nucl. Fusion (2019).
investigate He-W interactions and trapping



TDS to investigate trapping energies

TDS has been successfully used to

determine D binding energies in W
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2. What happens to the nanostructure during TDS
(>1800 K needed to fully desorb He)?

@ TDS profile #085
— — TMAPT fit
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Poon, Haasz, and Davis, J. Nucl. Mater., (2008).




¢ I Plasma exposure and conditions

Plasma conditions

ion flux Loy, =4.0x%x10"cm=2s ‘
electron temp. T, =11 eV
plasma potential 1, =40V
plasma density n, =2.0x10"%cm?
Plasma exposure (same for all samples): |
(1) 6 hours in plasma I
(2) held at 1123 K
W sample exposed to He plasma (3) biased at -50 V (ion energy of 90 V) ‘
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He release rate (cm?s™)

Thermal desorption spectroscopy

Temperature T (K)
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Ramp rate of 17.5 K s

consistent desorption peaks near
T=373 K and 1123 K for all samples

1123 K peak observed in literature for
similar He-plasma exposures

spikes in (e) are indication of bursting
of near-surface He bubbles



s | Post-TDS surface characterization

Helium ion microscopy

» better depth of field, resolution,
and contrast than SEM (but S$)
« performed at UC Berkeley BNC
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NanoFab

Spectroscopic ellipsometry

» can be performed in-situ and in real time

non-destructive & contactless

sensitivity to nm-sized changes

Ellipsometric parameters: ¥, A

Compensater r
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wikipedia.org




9 | Effect of annealing temperature on surface morphology
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10 I Conclusions for high-temperature annealing study -

1. TDS can greatly alter surface morphology of W nanostructure
« changes observed at 1173 K
 full recrystallization at 1423 K after 40 min
2. modeling of TDS spectra should account for complications that may arise

from changing surface morphology

1423 K

;
3. ellipsometry can potentially be used to track surface recovery in-situ |

Increasing final annealing temperature T



N

S
B

P

S el
pttns. S 2o xr 2

WA

i
-5 {2 .

z
v - ~ e
R R e :
B - S w
; :

(V)
)
O
O
.
)
(V)
c
O
c
O
)
o
.
O
(V]
-
(qv;
c
()
0.0
O
.
O
DN
I

Characterizing the W(111)+H(ads) system



DFT predictions of H adsorption on W(l I |)

Bond-centered (BC) H adsorption on W(111) was predicted using DFT [1]

by Z. Bergstrom, Brian Wirth’s group at U. Tennessee
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[1] Z. Bergstrom et al., J. Phys.: Condens. Matter, (2019).

Experimentally validate DFT results:

DFT provides inputs for larger scale
models, e.g.
* interparticle potentials for MD
* hydrogen dissociation energies

on surfaces
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13 | Low energy ion scattering (LEIS)

Model tisisatigsrahgviibndDftorrdpntiflysitrdieding sites
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14 | Experimental data compared to MD simulation (Kalypso [2])
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[2] Karolewski, Nucl. Instrum. Methods Phys. Res. B 230, (2005)



15 | Constraining adsorbate height and position
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6 | Summary

Sample S1 Sample S2

1. TDS of He-induced W nanostructure
« changes in morphology observed at 1173 K

(<1800 K for full He desorption)

* interpretation of TDS data needs to account § ’, 3%l

for changes in surface nanostructure
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2. Validated bond-centered (BC) hydrogen binding e}
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Thank you for your attention!
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s | Direct recoil spectroscopy

I
One of the few surface science techniques with hydrogen sensitivity
_ 1keV Ne®™ - W(111) ﬁ)irect recoil spectroscopy (DRS)\ l
105? H(R) ‘ |
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19 | Obtaining H recoil measurement at a single o

1keV Ne* » W(111), 6 = 45°, a = 76° |
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20 I TDS to investigate trapping energies

I
TDS has been successfully used to 1. Can TDS modeling be done in the same
determine D binding energies in W way for He-exposed W?
. o X - 2. What happens to the nanostructure during
- &?1 - TDS (>1800 K needed to fully desorb He)?
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Poon, Haasz, and Davis, J. Nucl. Mater., (2008). Gasparyan, Efimov, and Bystrov, Nucl. Fusion, (2016). I



21 | Detection of surface hydrogen is challenging

Not many experimental techniques are directly sensitive to surface hydrogen

NG

7 OAES )

Auger electron spec.

Electron collision

Auger electron emission
wikipedia.org

/

no auger

Kelectrons for H /

XPS

X-ray photoelectron spec.

Shifts in N 1s peaks possibly due
to H bonding
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Kerber et al., J. Vacuum Sci. Tech.,
(1996).

small shifts in peaks

Que to H binding J

LEED

Low energy electron diffraction

Reconstruction of W(110) due to H adsorption
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Flowers et al., J. Chem. Phys. 1993.
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