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He plasma interactions with W surfaces

-

Effect of TDS on He-induced W nanostructure



3 Helium-induced "fuzz" on W surfaces

RN02062007 (a) RN06182007 (ID) RN01222007 (c)

Fuzz growth in divertor-relevant conditions:

• material degradation

• core contamination (high Z)

• tritiated W dust

30kV X5, RCIn F. I 7= C E 'E

RN09272005 (d) RN06152007 (e)

M.J. Baldwin and R.P. Doerner, Nucl. Fusion (2008).



4 1 He-induced nanostructure growth on W surfaces

Dasgupta et al., Nucl. Fusion (201 9).

• physics for fuzz growth still not well understood

• general st

1 He implanted into W

2. forms stable pairs of He

coalesce into He bubbles

4. He bubbles + surface stresses + W adatom

diffusion + nanost\ucture

thermal desorption spectroscopy (TDS) can

investigate He-W interactions and trapping



5 I TDS to investigate trapping energies

TDS has been successfully used to

determine D binding energies in W
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1. Can TDS modeling be done in the same way for

He-exposed W?

2. What happens to the nanostructure during TDS

(>1800 K needed to fully desorb He)?



6 Plasma exposure and conditions
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W sample exposed to He plasma

electron temp.

plasma potential

plasma density

Plasma exposure (same for all •samples). I
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7  Thermal desorption spectroscopy
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• consistent desorption peaks near
T=373 K and 1123 K for all samples

• 1123 K peak observed in literature for
similar He-plasma exposures

• spikes in (e) are indication of bursting
of near-surface He bubbles

Ramp rate of 17.5 K s-1



8 Post-TDS surface characterization

Helium ion microscopy

• better depth of field, resolution,

and contrast than SEM (but $$)

• performed at UC Berkeley BNC

▪ I

Spectroscopic ellipsometry

• can be performed in-situ and in real time

• non-destructive a contactless

• sensitivity to nm-sized changes

Ellipsometric parameters: WI A

Rtgri.

wikipedia.org



9 I Effect of annealing temperature on surface morphology
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10 Conclusions for high-temperature annealing study

1 . TDS can greatly alter surface morphology of W nanostructure

• changes observed at 1173 K

• full recrystallization at 1423 K after 40 min

2. modeling of TDS spectra should account for complications that may arise

from changing surface morphology

3. ellipsometry can potentially be used to track surface recovery in-situ

1073 K 1173 K 1273 K 1423 K

Increasing final annealing temperature T
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Hydrogen adsorption on W surfaces

-

Characterizing the W(111)+H(ads) system



12 DFT predictions of H adsorption on W( I I I)

Bond-centered (BC) H adsorption on W(111) was predicted using DFT [1]

by Z. Bergstrom, Brian Wirth's group at U. Tennessee
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Experimentally validate DFT results:

DFT provides inputs for larger scale

models, e.g.

• interparticle potentials for MD

• hydrogen dissociation energies

on surfaces

[1] Z. Bergstrom et al., J. Phys.: Condens. Matter, (2019).



1 3 Low energy ion scattering (LEIS)
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14 Experimental data compared to MD simulation (Kalypso [2])
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15 Constraining adsorbate height and position
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16 Summary

1. TDS of He-induced W nanostructure

• changes in morphology observed at 1173 K

(<<1800 K for full He desorption)

• interpretation of TDS data needs to account

for changes in surface nanostructure

2. Validated bond-centered (BC) hydrogen binding

for the W(111)+H(ads) system
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18 Direct recoil spectroscopy

One of the few surface science techniques with hydrogen sensitivity

1 keV Ne+ —> W(111)
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1 9 Obtaining H recoil measurement at a single a
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20 I TDS to investigate trapping energies

TDS has been successfully used to

determine D binding energies in W
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21 EllNot many experimental techniques are directly sensitive to surface hydrogen

Detection of surface hydrogen is challenging

AES XPS
Auger electron spec. X-ray photoelectron spec.

Electron c®IlNolsian

Auger electr n emission

wikipedia.org

no auger
e_lectrons for H

Shifts in N ls peaks possibly due
to H bonding
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Kerber et al., J. Vacuum Sci. Tech.,
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